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Abstract

This document is a progress report for the second year of the research project “Sensor Data

Integrity and Mitigation of Perceptual Failures”, sponsored by the AFOSR/AOARD under

agreement number FA2386-10-1-4153. The objective of this research is to better understand

and promote integrity and dependability of unmanned ground vehicles (UGVs), with a focus

on their perceptual systems. This will provide UGVs with the ability to achieve long-term

autonomous operations in o↵-road environments, including in challenging conditions. We

investigate methods to mitigate, detect and/or recover from perceptual failures and failures

due to perception. The document is divided into four main sections.

First, we further develop the concept of laser-to-radar sensing redundancy for resilient

perception in adverse environmental conditions (e.g. presence of smoke, airborne dust or

heavy rain). We show that we can separate laser points due to dust or smoke clouds from the

points corresponding to actual dense obstacles using a consistency test with data acquired

by a mm-wave radar. A direct benefit is that the UGV does not misinterpret dust/smoke

clouds or heavy rain particles as actual obstacles. A more general benefit is that using this

technique, a UGV can keep building accurate environment models in clear environmental

conditions, while maintaining resilient perception in adverse environmental conditions.

Second, we analyse the influence of di↵erent terrain geometry representations (in partic-

ular state-of-the-art techniques based on Gaussian Process regression) on the estimation

of traversability of a ground vehicle. In particular, we discuss how these terrain geom-

etry modelling techniques may whether mitigate or generate errors in the estimation of

traversability. This preliminary study will drive further investigation into traversability

estimation techniques that are more accurate and more robust to occlusions and sensing

errors.

In the third part, we further develop the concept of resilient navigation through probabilistic

modality reconfiguration that we introduced in the previous progress report in 2011. The

update includes new experiments, and a comparison with a simpler thresholding technique

to decide the most appropriate navigation modality. The benefit of this navigation modality

reconfiguration technique is the online mitigation of, or recovery from, unpredictable errors

such as control deviations, map failures and localisation faults.

Finally, in the last part of this document pushes the study to a higher level in the architecture
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of a UGV system. We show that the platform’s safety can be increased and the robot made

more robust to control and localisation errors by achieving path planning with stochastic

control, i.e. by anticipating possible errors at the planning stage. In the proposed method,

the outcomes of desired control actions are learned from experience and represented statis-

tically using Gaussian process regression models. We provide an experimental validation of

this approach on a planetary rover.
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Chapter 1

Introduction

The general objective of this research is to better understand and promote integrity and de-

pendability of perceptual systems for unmanned ground vehicles (UGVs), and UGV systems

in general, to provide them with the ability to achieve long-term autonomous operations in

o↵-road environments, including (and in particular) in challenging conditions.

Aspects considered in this project are:

• Sensor Data Integrity: what (combination of) sensors for what challenging environ-

ments?

• Characterisation of Perceptual Failures and Failures due to Perception in a UGV

system,

• Detection or Mitigation of Perceptual Failures (mostly using Multimodal Sensing Re-

dundancy),

• Mitigation of Failures due to Perception (through Modality Reconfiguration).

This document is mostly articulated around the publications that resulted from this project

in the 2011-2012 period of performance (see Section 1.6). The following sections provide

a summary of the update on the research items that were initially introduced in the 2011

report of this project1, as well as new research items introduced this year.
1
labelled (Project Report, 2011) in the rest of this document (see Sec. 1.7)
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In (Project Report, 2011) we considered the problem of diagnosis for outdoor robotics,

characterising failures and their possible causes and consequences within a UGV system,

represented by the generic diagram in Fig. 12. In this report, we further consider the

[2] [3] 
[1] 

[4] 

Figure 1.1: Functional components of a typical UGV System. The red ellipses indicate the
parts of the sytem that are considered (separately) in this document. The associated labels
(e.g. [2]) refer to the corresponding publications (see Sec. 1.6).

problems of perceptual failures and failures due to perception in this representative system,

with experimental validation on three di↵erent types of platforms (which further illustrates

the generality of the diagram).

1.1 Laser-to-radar Sensing Redundancy for Resilient Percep-

tion in Adverse Environmental Conditions [1]

In (Project Report, 2011), we proposed a preliminary exploration of multi-modal redun-

dancy for the mitigation and/or detection of perceptual failures, specifically between laser

and radar. This initial study pointed out the benefit for a UGV, which could safely navigate

in the presence of airborne dust, smoke or heavy rain. [1] further develops this study. It

proposes a method to separate 3D data points that are considered as consistent between
2
In this diagram only 2 (di↵erent) sensors are represented for simplicity, however, the number and types

of sensors do not su↵er from such limitation in reality.
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observations of a laser range finder and a mm-wave radar, from data points that are incon-

sistent. Consistent observations mean that both types of sensors detect the same target (at

the same geographical location), while inconsistent points are typically found when environ-

mental elements such as airborne dust or smoke particles are detected by the laser (i.e. they

strongly attenuate laser EM waves) and not by the radar. Experiments conducted using the

Marulan datasets (SDI Report, 2009) show how this method can separate dust and smoke

clouds from raw laser data, preventing traditional perception systems from considering them

as obstacles. Exploiting the best of laser and radar sensors and their combination opens the

door to resilient navigation of UGVs in challenging environmental conditions. The model

of the environment built by the UGV can still be as accurate as models typically built from

laser data in clear conditions (i.e. without dust, smoke or rain), while safe navigation can

still be maintained in adverse conditions (i.e. in the presence of dust, smoke) thanks to the

radar.

Future Work

Ongoing and future work on this subject include the use of a better sensor model for the

radar. Research is limited in this area, and a better understanding of radar data (and

the di↵erences with laser data) would not only improve radar-based perception that is

needed in adverse environmental conditions, it would also allow for a more appropriate and

trustful comparison between laser and radar data. Future work will also look at learning

how to separate consistent and inconsistent data acquired by di↵erent sensing modalities3

automatically.

1.2 Analysis of Terrain Geometry Representations for Traversabil-

ity of a UGV [2]

In this study, the task of interpretation of the sensing data consists in analysing the terrain

traversability (i.e. predicted vehicle response on the terrain, or predicted attitude and con-

figuration of the platform). This terrain traversability analysis allows the UGV to provide a

map of di�culty of the unstructured terrain (where a piece of terrain with highest di�culty

will be considered as an obstacle), which is necessary to the path planner (see Fig. 1.2). We
3
i.e. using a distinct physical process, for example operating at di↵erent electromagnetic frequencies.
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Figure 1.2: In this example of a particular UGV System architecture, the robot, a planetary
rover, needs to build a terrain model to achieve the terrain traversability analysis required
for its motion planning.

consider and discuss di↵erent methods for representing the geometry of the terrain from

sensing data (typically 3D point clouds provided by a range sensor, e.g. stereovision or

RGB-D camera). We discuss how these terrain modelling techniques may mitigate, or on

the contrary generate, errors in the traversability analysis due to inaccurate or incomplete

representations of the terrain.

This research was published in [2]. The abstract of the paper follows.

Abstract

For a planetary rover to successfully traverse across unstructured terrain autonomously,

one of the major challenges is to assess its local traversability such that it can plan a

trajectory to achieve its mission goals e�ciently while minimising risk to the vehicle itself.

This paper aims to provide a comparative study on di↵erent approaches for representing

the geometry of Martian terrain for the purpose of evaluating terrain traversability. An

accurate representation of the geometric properties of the terrain is essential as it can

directly a↵ect the determination of traversability for a ground vehicle. We explore current

state-of-the-art techniques for terrain estimation, in particular Gaussian Processes (GP) in

various forms, and discuss the suitability of each technique in the context of an unstructured

Martian terrain. Furthermore, we present the limitations of regression techniques in terms
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of spatial correlation and continuity assumptions, and the impact on traversability analysis

of a planetary rover across unstructured terrain. The analysis was performed on datasets of

the Mars Yard at the Powerhouse Museum in Sydney, obtained using the onboard RGB-D

camera.

Ongoing and Future Work

Our ongoing work in this area focuses on directly learning vehicle response on the terrain

from experience (as opposed to learning the terrain geometric model and predicting the

vehicle response on this model). This will improve the traversability estimation, in particular

in areas of poor or missing sensing data.

Future work will use machine learning to better anticipate (and accommodate for) situations

that are di�cult to predict from direct perception, in particular terrain deformations due

to the interaction with the rover. These situations would be typically regarded as errors

in the terrain model (inconsistencies between observation and terrain model built a priori)

when monitoring the status of the rover, and are rarely accounted for.

1.3 Resilient Navigation through Probabilistic Modality Re-

configuration [3]

In (Project Report, 2011) we also proposed an investigation into techniques of reconfigura-

tion to recover from possible failures (or mitigate them), using a multi-modality approach

for navigation. The concept was implemented and experimented on an indoor robot, al-

though it is equally applicable to UGVs (as shown by prior work from the PI). In 2012, new

series of experiments were conducted, with a more accurate localisation system, allowing for

a better proof of concept that could be focussed on each source of error independently. A

comparison was also made with a simpler approach using thresholds on distances between

the robot and closest obstacles. It was shown that the latter approach was undesirable, due

to the occurrence of oscillations in the modality recommendation.

This research, including these 2012 updates, was published in [3]. The abstract of the paper

follows.
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Abstract

This paper proposes an approach to achieve resilient navigation for indoor mobile robots.

Resilient navigation seeks to mitigate the impact of control, localisation, or map errors

on the safety of the platform while enforcing the robot’s ability to achieve its goal. We

show that resilience to unpredictable errors can be achieved by combining the benefits

of independent and complementary algorithmic approaches to navigation, or modalities,

each tuned to a particular type of environment or situation. In this paper, the modalities

comprise a path planning method and a reactive motion strategy. While the robot navigates,

a Hidden Markov Model continually estimates the most appropriate modality based on two

types of information: context (information known a priori) and monitoring (evaluating

unpredictable aspects of the current situation). The robot then uses the recommended

modality, switching between one and another dynamically. Experimental validation with

a SegwayRMP-based platform in an o�ce environment shows that our approach enables

failure mitigation while maintaining the safety of the platform. The robot is shown to reach

its goal in the presence of: 1) unpredicted control errors, 2) unexpected map errors and 3)

a large injected localisation fault.

1.4 Motion Planning and Stochastic Control with Experi-

mental Validation on a Rover [4]

This study concentrates e↵orts at a level of the UGV system further away from the in-

put sensing data. We argue the need for considering control uncertainty at the stage of

path planning, since the outcome of an executed action is not deterministic, and therefore

cannot be predicted consistently and accurately. This is often due to imperfections of the

robot controller. However, unexpected deviations from desired control actions can also be

caused (or increased) by an erroneous or incomplete terrain model, and/or localisation er-

rors during the execution of control actions. In the method proposed and implemented in

[4], although we do not identify the causes of control action errors, we do mitigate for some

localisation errors in our system (as well as “pure” control errors) by learning the outcome

of the available control actions from experience, and constructing policies for navigation

that account for the stochastic nature of the control actions.
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This research will be published in October in the proceedings of the IEEE/RSJ IROS con-

ference [4]. The abstract of the paper follows.

Abstract

Motion planning for planetary rovers must consider control uncertainty in order to maintain

the safety of the platform during navigation. Modelling such control uncertainty is di�cult

due to the complex interaction between the platform and its environment. In this paper, we

propose a motion planning approach whereby the outcome of control actions is learned from

experience and represented statistically using a Gaussian process regression model. This

model is used to construct a control policy for navigation to a goal region in a terrain map

built using an on-board RGB-D camera. The terrain includes flat ground, small rocks, and

non-traversable rocks. We report the results of 200 simulated and 35 experimental trials

that validate the approach and demonstrate the value of considering control uncertainty in

maintaining platform safety.

1.5 New Multimodal Sensing Datasets

To begin to address the issues of sensor data integrity, in a technical e↵ort preliminary to this

project in 2008 that was sponsored by AFRL, synchronised data were gathered from a repre-

sentative UGV platform using a wide variety of sensing modalities (see (SDI Report, 2009)

in Sec. 1.7). These included multiple 2D laser range finders, a visual camera, an infrared

camera, and a mm-wave radar, in addition to a dGPS/INS unit for accurate localisa-

tion. These large volumes of data were made available to the community to evaluate

the performance of perception algorithms. This was later published as a “data paper”

in one of the top-end robotics journals: the International Journal of Robotics Research (see

(IJRR, 2010)).

As this research was being developed, it became clear that we should extend this library

of datasets, both in terms of sensing modalities and challenging conditions. Therefore, we

recently acquired new datasets using an extended suite of sensors. In addition to the same

sensors mentioned above, we used stereovision, a 3D laser (Velodyne HDL-64E), a 360�

visual camera (Point Grey Ladybug 2). We also used two UGV platforms to collect the
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data. The challenging conditions were also extended to sunset, sudden switch from articifial

lighting to complete or partial darkness, and fire (or presence of strong heat waves in the

air, that can constitute and obscurrant for an IR camera as opposed to a visual camera).

At the end of this period of performance, these datasets are still being processed and

analysed for accuracy and completeness. Once this analysis is completed and the datasets

are thoroughly documented, we plan to make this data available to AFRL, other partners

and the research community in the near future (within the next period of performance).

However, some of these data can already be made available to AFRL scientists upon request.

1.6 Publications and Communication of this Research

This section lists the publications that resulted from full or partial funding from this grant,

as well as presentations at conferences and invited presentations, during the current period

of performance.

Conference Publications

• [2] K. Ho, T. Peynot and S. Sukkarieh, “Analysis of Terrain Geometry Representa-

tions for Traversability of a Mars Rover”, 11th NCSS/NSSA Australian Space Science

Conference, Canberra, Australia, September 2011.

• [3] T. Peynot, R. Fitch, R. McAllister and A. Alempijevic, “Resilient Navigation

through Probabilistic Modality Reconfiguration”, 12th International Conference on

Intelligent Autonomous Systems (IAS), Jeju Island, Korea, June 2012.

• [4] R. McAllister, T. Peynot, R. Fitch and S. Sukkarieh, “Motion Planning and

Stochastic Control with Experimental Validation on a Planetary Rover”, to appear

in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),

Vilamoura, Portugal, October 2012. (Accepted 2 July 2012).

Workshop Publication (Peer-Reviewed)

• [1] M. P. Gerardo Castro and T. Peynot, “Laser-to-Radar Sensing Redundancy for

Resilient Perception in Adverse Environmental Conditions”, Beyond Laser and Vi-
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sion: Alternative Sensing Techniques for Robotics Perception, Workshop, Robotics:

Science and Systems (RSS), Sydney, Australia, 11-12 July 2012.

Conference Presentations

• “Laser-to-Radar Sensing Redundancy for Resilient Perception in Adverse Environ-

mental Conditions”, presented by M. P. Gerardo Castro at the Workshop Beyond

Laser and Vision: Alternative Sensing Techniques for Robotics Perception, Robotics:

Science and Systems (RSS), Sydney, Australia, 11-12 July 2012.

• “Resilient Navigation through Probabilistic Modality Reconfiguration”, presented by

T. Peynot at the 12th International Conference on Intelligent Autonomous Systems

(IAS ), Jeju Island, Korea, 29 June 2012.

• “Analysis of Terrain Geometry Representations for Traversability of a Mars Rover”,

presented by K. Ho at the 11th NCSS/NSSA Australian Space Science Conference,

Canberra, Australia, September 2011.

• “Persistent Perception for Long-term Autonomy of Ground Vehicles”, presented by

T. Peynot at Workshop on Long-term Autonomy, IEEE International Conference on

Robotics and Automation (ICRA), Shanghai, China, 9 May 2011.

• “Autonomous Reconfiguration of a Multi-Modal Mobile Robot”, presented by T.

Peynot at Workshop on Automated Diagnosis, Repair and Re-Configuration of Robot

Systems, IEEE International Conference on Robotics and Automation (ICRA), Shang-

hai, China, 9 May 2011.

Invited Presentations

The following lists invited presentations given by the PI in the current period of performance

that included some research developed in the context of this project.

• “Sensor Data Integrity and Mitigation of Perceptual Failures”, Air Force O�ce of

Scientific Research (AFOSR) Program Reviews, Arlington, VA, USA, 25 January

2012.
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• “Dependable Autonomy of Planetary Rovers”, Congreso Internacional en Aeronau-

tica: Avances en desarollo e innovacion tecnologica, Universidad Militar Nueva Granada,

Bogota, Colombia, 12 October 2011.

• “Perception Integrity and Dependable Autonomy for Mobile Robots”, Universidad

Militar Nueva Granada, Bogota, Colombia, 5 October 2011.

• “Perception Integrity and Dependable Autonomy for Mobile Robots”, Model-based

Embedded and Robotic Systems group (MERS), Computer Science and Artificial In-

telligence Laboratory (CSAIL), Massachussetts Institute of Technology (MIT), Cam-

bridge, MA, USA, 9 June 2011.

• “Sensor Data Integrity and Mitigation of Perceptual Failures”, Air Force O�ce of

Scientific Research (AFOSR) Robust Computational Intelligence Program Review,

Arlington, VA, USA, 7 June 2011.

Collaborations and other Interactions

Collaboration with the Centre for Autonomous Systems at the University of Technology

(UTS), Sydney, made the experimental validation of [4] possible.

Interesting research questions and discussions came out of the two AFOSR program reviews

the PI attended during this period of performance, in June 2011 and January 2012, in

Arlington, VA.

At the Robust Computational Intelligence (RCI) program review in June 2011, key people

I had the pleasure to exchange ideas with were: Tom Russell, director, Peter Friedland

(host and interim project manager) and David Atkinson (former RCI program manager),

in addition to my colleagues PIs and co-PIs of the RCI program.

At the extended AFOSR Cognition, Decision, and Computational Intelligence program

review in January 2012, key AFRL people I had the pleasure to discuss this research and

other related research with included: Jay Myung (new program manager), Peter Friedland

(AFRL Advisor), Michael A. Vidulich (AFRL) and Kevin Gluck (AFRL), in addition to

my colleagues PIs and co-PIs of the di↵erent programs.
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1.7 Related References

These references are reports from previous AFRL/AOARD grants related this project, or

prior progress reports.

• (Project Report, 2011) T. Peynot et al., “Sensor Data Integrity and Mitigation of

Perceptual Failures - Progress Report”, Technical Report for AFRL/AFOSR/AOARD,

Australian Centre for Field Robotics, The University of Sydney, May 2011.

• (SDI Report, 2009) T. Peynot, S. Terho and S. Scheding, “Sensor Data Integrity:

Multi-Sensor Perception for Unmanned Ground Vehicle”, Technical Report ACFR-

TR-2009-002, Australian Centre for Field Robotics, The University of Sydney, Febru-

ary 2009.

• (IJRR, 2010) T. Peynot, S. Scheding, and S. Terho, “The Marulan Data Sets:

Multi-Sensor Perception in Natural Environment with Challenging Conditions”, In-

ternational Journal of Robotics Research, vol. 29, no. 13, pp. 1602-1607, November

2010.

1.8 Outline

The following chapters contain the publications summarised above, and listed in Sec. 1.6.
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Chapter 2

Laser-to-Radar Sensing

Redundancy for Resilient

Perception in Adverse

Environmental Conditions [1]

by M. P. Gerardo Castro and T. Peynot,

inWorkshop Beyond Laser and Vision: Alternative Sensing Techniques for Robotics Per-

ception, Robotics: Science and Systems (RSS),

Sydney, Australia, 11-12 July 2012.
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Laser-to-Radar Sensing Redundancy for Resilient
Perception in Adverse Environmental Conditions

Marcos P. Gerardo Castro, Thierry Peynot,
Australian Centre for Field Robotics (ACFR)

The University of Sydney, NSW 2006, Australia
m.castro@acfr.usyd.edu.au, tpeynot@acfr.usyd.edu.au

I. INTRODUCTION

This work focuses on the development of reliable perception
systems for outdoor unmanned ground vehicles (UGV), in
particular in adverse environmental conditions (e.g. presence
of airborne dust, smoke, thick fog or rain). The problem
of modelling and mitigating systematic errors in perception
models, such as sensor measurement errors or sensor mis-
alignment, has been extensively studied by robotics researchers
and thorough solutions have been proposed (e.g. [1] for range
sensors such as laser range finders (LRF) or radars). However,
the main remaining challenge lies in interpretation errors.
These errors can be very random, are difficult to predict, and
can often be orders of magnitude larger than the systematic
errors mentioned above. Arguably, a reliable perception system
should use different sensor modalities [3], [2], especially for
outdoor operations. As these modalities sense the environ-
ment using different physical processes, they also respond
differently to environmental conditions. For example, a mm-
wave radar has excellent properties of penetration through
heavy dust and smoke contrary to a laser, and an infrared
camera can see through smoke, contrary to a visual camera.
Therefore, a more reliable perception system can be obtained
by intelligently combining the data provided by such different
sensing modalities [4].

While the fusion of observations made by a laser and a radar
in clear conditions, e.g. without the presence of challenging
conditions such as dust or smoke, is straightforward when
a good sensor error model is available [1], it relies on the
assumption (or pre-condition) that the two sensors actually
detect the same targets in the environment. If, for example, a
LRF does not see through a heavy dust cloud while a radar
does, this assumption does not hold any more. Therefore,
in such a situation data fusion should not be executed, at
least not in its traditional form. Consequently, to be robust
to adverse environmental conditions, the perception system
should have the ability to verify this assumption of data
consistency prior to fusion. Another advantage to this ability is
that the data provided by a LRF can be conveniently filtered,
separating points returned because of dust or smoke that a
radar would hardly be affected by. The radar could then ensure
that detection of actual obstacles and terrain modelling stay
operational, albeit less accurate (since the radar accuracy is
typically not comparable to the laser’s as described in Table I).

Recently, laser range finders capable of returning multiple
echoes for each emitted pulse have been introduced commer-
cially (e.g. the Sick LMS5xx series [5] or LD-MRS [6] for
automotive applications). Although this ability has made such
laser sensors more robust to adverse environmental conditions
(e.g. compared to the LMS2xx series), they cannot provide a
full solution of the problem. Because of the level of attenuation
of the laser signal, a mm-wave radar will still be able to
penetrate better through obscurrants such as heavy dust that
would eventually block laser signals [7], [8]. Moreover,
an analysis of pre-conditions for laser-radar fusion and for
separating dense objects from such obscurrants would still be
required to obtain a resilient navigation of the UGV.

The idea of using laser-radar data comparison for perception
in the presence of airborne dust was introduced in previous
work by the authors. However, if [9] delivered a proof of
concept with promising initial results, this work had several
limitations: 1) the two sensors were considered perfectly
aligned, allowing for a direct comparison of the measured
ranges they provide for each bearing angle, 2) the laser-radar
data comparison was specifically designed and used as an
airborne dust filter, 3) this filter was demonstrated on only
one particular dataset. In practice, not only is the alignment
assumption a strong constraint on the system, but such align-
ment is practically nearly impossible unless the two sensors
use the same mirror and scanning mechanism. The technique
proposed in this paper does not require that the sensors are
perfectly aligned, instead it uses a 6-DOF calibration allowing
to correct the mis-alignment of the sensors. The comparison
of the data can then be realised in a coordinate frame related
to the body of the vehicle (instead of one of the sensor
frames as in [9]), accounting for the extrinsic calibration of
the sensors. In this paper we also exploit more information
from the spectrum provided by the radar, allowing for a closer
comparison between the two types of data. Finally, if the
technique can also be used as a dust filter, it is not designed as
such specifically, so that other causes of inconsistencies can
be detected as well. Some of these causes will be discussed
below.

The paper is organized as follows. In Sec. II, we discuss
the methodology to perform the laser-radar consistency test.
Sec. III presents an experimental study to characterise the
laser-radar distance. In Sec. IV, we describe results measuring
the consistency test in scenarios with the presence of airborne



dust, smoke or none of the above.

II. LASER-RADAR REDUNDANCY

In order to compensate for the mis-alignment of the laser
and radar sensors, we need to perform an extrinsic calibration
of the relative transformation between the two sensors (or the
transformation between each sensor and a frame linked to the
body of the vehicle, which we will call the body frame). In
this paper we use the calibration technique described in [1],
which can achieve a joint extrinsic calibration of multiple
exteroceptive range-based sensors such as lasers and radar.
Since the configurations of the sensors are different, only a
(common) part of a synchronised pair of laser-radar scans
contain points that can be considered consistent1.This part can
be seen as a “common footprint” (or “footprint overlap”) of
the two scans and can be conveniently expressed as a range of
bearing angles for each type of scan. Hereafter, all comparison
of laser and radar points is made within this common part
of the scans. Another important thing to consider during this
comparison is the range resolution of the two sensors. As
described in Table I, radar resolution is much bigger than the
laser resolution.

The rest of the process can happen systematically on-line.
Sec. II-A describes how target data points are extracted from
the radar raw data (i.e. noise removal). Then, Sec. II-B shows
how radar and laser points are effectively compared after their
transformation into the body frame.

TABLE I
RANGE SENSOR SPECIFICATIONS

Sensor Maximum Range Horizontal Angular Scanning
(model) range resolution FOV resolution rate

Horizontal Laser
(Sick LMS291) 80 m 0.01 m 180� 0.25� ⇡18 Hz

Radar
(Custom built

at ACFR) 40 m 0.2 m 360� ⇡1.90� ⇡3 Hz

A. The Radar Data

For each bearing angle the radar provides an FFT (Fast
Fourier Transform) spectrum. Using the “radar equation” [7]
this spectrum can be mapped to a function of intensity vs.
range. Most robotics applications only use the highest peak
of that spectrum as a range value provided by the radar (such
as in our prior work in [9]). However, this leads to the loss
of a significant amount of useful information contained in
the rest of the spectrum. As an example, [10] exploited the
shape of this spectrum to make a more accurate estimation of
the ground. The resulting ground estimation was significantly
more accurate than when using the highest peak of the
spectrum only. However, this particular technique can only be
used if a model of the spectrum profile obtained for a given
target (such as a roughly flat piece of ground) is known a
priori. In order to make a “fair” comparison of the radar points

1The adjective consistent will be used to refer to the local agreement
between laser and radar observations.

(a) Radar Spectrum

(b) Laser Projected in the Camera frame

Fig. 1. (a) Radar Spectrum, coloured by intensities from black to white.
The corresponding laser points are showed in green. (b) Laser Projected in a
visual image from the the platform at the same area

with observed laser points, in this paper we extract other peaks
(local maxima) from the spectrum, in addition to the highest
peaks (the global maxima), see Fig. 1(a). This will provide
us with a better resolution in the discrimination of laser-radar
data. First, for each radar bearing angle, all intensity peaks
above a lower threshold of intensity are extracted from the
radar spectrum. The lower threshold of intensity was defined
in order to minimise the radar noise. Then, given that: a) the
laser provides much more accurate data than the radar, b) we
know that generally both sensors detect the same targets in
clear conditions, c) we have an accurate calibration of the
sensors and a very accurate localisation on our robot, we used
the laser data as a reference in large datasets of a rural static
environment to determine a relevant criteria for an automatic
extraction of the peaks from the noise in the radar data. For our
radar, extracting peaks that have an intensity above 55% of the
intensity of the highest peak was found to be appropriate. From
the points extracted using the threshold criteria we then defined
the radar candidate peaks. A radar point can be considered
as a candidate peak if a laser point is closer(in terms of 3D
euclidean distances) to the radar point/peak than the highest
peak of the current radar spectrum.

B. Laser-Radar Comparison (Consistency Test)

The actual comparison between laser points and candidate
radar peaks relies on the computation of the 3D euclidean
distance between each laser point and the closest radar target



(a) Laser data (b) Radar data

Fig. 2. View from the top of the scene observed in clear conditions by the
four lasers on the Argo (a) and the radar (b). Points are coloured by elevation.
We can see the posts of a fence at the bottom and a shed on the left of (a).
The area is about 56⇥ 55m2.

point found in the synchronised scan, which will be called the
laser-radar distance. A model of the laser-radar distance based
on 3D distance comparison (which will be described below)
between laser and radar points was used to decide whether the
laser and radar are observing the same target. The main reasons
for not observing the same target (i.e. laser-radar measurement
discrepancy) are the following:

• the laser actually detects dust, smoke or rain particles that
the radar waves penetrate through,

• the perception is inconsistent because of the material the
target is made of (e.g. the radar may detect the presence
of a window that the laser sees through and therefore
does not detect),

• the relative extrinsic calibration between the laser and the
radar is wrong,

• the echo returned by the sensor is the result of a multi-
path effect (see [7], [8]).

To determine an appropriate threshold on the 3D distance
between comparable laser and radar points, we used a dataset
in clear conditions in a rural environment (see Fig. 2), limiting
the risks of multi-path or distinct reaction of the radar and the
laser to particular materials. Since in these conditions a close
match should always be found, the dataset (containing about
1.7 million laser points) could be used as a reference.

Fig. II-B shows the number of inconsistent points for a
varying value of distance threshold � (i.e. number of laser
points for which the closest radar peak was at a distance
superior to �). A distance threshold of � = 0.8m was
found to be appropriate. With this threshold in the static
environment used as reference, only about 0.5% of the points
were inconsistent.

Section III and IV show an experimental study to char-
acterise the laser-radar distance and different examples and
applications of the laser-radar comparison.

III. EXPERIMENTAL SETUP

The experiments were conducted with the Argo UGV, an
8 wheel skid-steering platform (see Fig. 4) equipped with
a reliable navigation system composed of a Novatel SPAN
(Synchronised Position Attitude & Navigation) System and
a Honeywell Inertial Measurement Unit. This unit usually
provides a 2-cm accuracy localisation, with a constant update
of the estimated uncertainties on this solution.

Fig. 3. Percentage of inconsistent points vs. threshold on the laser-radar
distance (in metres). An 0.5% error was found with a threshold at 0.8m
(blue cross).

Fig. 4. The Argo UGV and its sensors.

The following exteroceptive sensors were mounted on the
vehicle (Fig. 4):

• 4 Sick LMS291/221 laser range scanners, with 180� field
of view (FOV), 0.25� angular resolution, and a range
resolution of 0.01m.

• a 94GHz Frequency Modulated Continuous Wave
(FMCW) Radar, custom built at ACFR for environment
imaging, with 360� FOV, 2� angular resolution and a
range resolution of 0.2m,

• a visual camera and an infrared camera.
The Laser indicated in Fig. 4 was only roughly aligned with
the Radar to have a similar perspective of the environment,
therefore this laser was chosen to provide the data to be
compared with the radar data (recall that only a rough physical
alignment is sufficient, as mentioned earlier, as long as an
extrinsic calibration between the two sensors is available).
Fig. 5 shows an example of scans provided by these two
sensors.

The experiments were conducted with the Marulan Datasets
described in [11]. We used various datasets with the vehicle
driven around two different areas. Each dataset featured the
presence of airborne dust (Fig. 8), smoke (Fig. 9), rain, or



none of the above (i.e. clear conditions). The environment
was not known by the vehicle a priori.

Fig. 5. Example of laser and radar scans displayed as range vs. bearing
angle. Red points are laser returns while blue points are radar peaks (the
highest peaks for each bearing angle are shown in dark blue). Note the laser
returns due to dust at shorter range, which are clearly inconsistent with the
radar measurements.

Fig. 6. Experiments with adverse environmental conditions including
presence of airborne dust.

IV. RESULTS

In these experiments, synchronised pairs of laser and radar
scans are compared to separate consistent and inconsistent
points. In practice, since the laser scanner has a higher
scanning rate than the radar scanner (see Table I), for each
laser scan the closest radar data available in time is used for
the comparison and the consistency check.

Fig. 8 shows an experiment realised in the same area as in
Fig. 2 but with presence of heavy airborne dust. We can see
that most dust points in the laser data have been well cleaned
out from the dataset, after being found inconsistent with the
radar data. However, some dust points returned by the laser
have remained, as they were too close to the ground, which
was still seen by the radar, to be called inconsistent.

Fig. 9 shows another experiment, conducted in a different
area (a more natural and unstructured environment with sur-
rounding trees), with presence of smoke. It shows how smoke
also significantly affects the laser data and how the consistency
test with the radar data allows for an effective separation of
the smoke cloud.

Fig. 7. Visual Image from the platform perspective, where results from Fig. 8
is shown.

(a) All Laser points, bird’s eye view. (b) Without the inconsistent points

(c) Side view. Top: all points. Bottom: consistent points only.

Fig. 8. Experiment with heavy airborne dust (see Fig. III). Points are coloured
by elevation. The laser points found to be consistent were coloured from green
to red, while inconsistent points were coloured from yellow to white. The blue
line shows the path followed by the platform while collecting this dataset.

(a) All Laser points. (b) Consistent points only.

Fig. 9. Experiment with smoke, bird’s eye view. Points are coloured by
elevation. The laser points found to be consistent were coloured from green
to red, while inconsistent points were coloured from yellow to white.



V. DISCUSSION

The method presented in this paper enables to maintain
the safe operation of a UGV in the presence of adverse
environmental elements such as airborne dust or smoke, which
are strong obscurants for common robotic sensing modalities
such as a laser or a visual camera. When dust or smoke are
present and block the laser perception, the UGV may still
go through the obscurant cloud, with the radar allowing for
a persistent obstacle detection. On the other hand when no
obscurant cloud is present, laser perception will be preferred
since it is more accurate compared with the radar data.

In the experiments presented in this paper we have observed
that some dust/smoke points may not be labelled as incon-
sistent when they are too close to dense obstacles, as their
discrimination is limited by the resolution and the noise of
the radar data.

Another situation that this method may not be able to
identify is when airborne dust or smoke particles are detected
by the laser in the immediate proximity of radar returns due to
multi-path effect. This is because in such situation the system
will consider these radar returns as a confirmation that the
target detected by the laser is in fact a dense object (therefore
a potential obstacle for the UGV). To overcome this situation
another modality such as visual or infrared can be used.

The proposed method relies on the availability of an ac-
curate exteroceptive calibration between the laser and the
radar. If the calibration is jeopardised during a mission of
the UGV (for example one of the sensors is accidentally put
out of place), the consistency test might reject a large part
of the laser data even in clear conditions. Consequently, the
UGV would have to rely entirely and systematically on the
radar data (which is typically less accurate). However, such
situation could be recognised over time since the inconsistency
between the laser and radar data would then be very stable and
geometrically constant. This could let the system distinguish
this case from the presence of dust or smoke for example.

A sensor model that accounts for uncertainties will be
introduced in future work. Uncertainties in the comparison test
will also be analysed (see Fig. II-B) by considering context
information, e.g. facing scenarios where dust is close to the
ground.
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Summary: For a planetary rover to successfully traverse across unstructured terrain au-
tonomously, one of the major challenges is to assess its local traversability such that it can
plan a trajectory to achieve its mission goals efficiently while minimising risk to the vehicle
itself. This paper aims to provide a comparative study on different approaches for representing
the geometry of Martian terrain for the purpose of evaluating terrain traversability. An accurate
representation of the geometric properties of the terrain is essential as it can directly affect
the determination of traversability for a ground vehicle. We explore current state-of-the-art
techniques for terrain estimation, in particular Gaussian Processes (GP) in various forms,
and discuss the suitability of each technique in the context of an unstructured Martian terrain.
Furthermore, we present the limitations of regression techniques in terms of spatial correlation
and continuity assumptions, and the impact on traversability analysis of a planetary rover
across unstructured terrain. The analysis was performed on datasets of the Mars Yard at the
Powerhouse Museum in Sydney, obtained using the onboard RGB-D camera.

I. Introduction

Robotic missions have been utilised to explore various scientific aspects of the Mars surface,
including surface geology and the possibility of life. Teleoperating robots from Earth is
proving difficult due to the communication delay between Earth and Mars which can be as
long as 22 minutes. Early Lunar exploration rovers such as the Lunokhod required a five-man
team to operate by sending driving commands from Earth in real time. Despite having a much
smaller communication of 3 seconds, the team experienced many challenges to manoeuvre the
Lunokhod on the Lunar surface. To perform the robotic mission more efficiently, low order or
time-critical tasks such as obstacle avoidance and motor control can be handled autonomously,
while high order mission tasks such as “explore area A” or “travel to rock B” can be handled
by ground operators on Earth. By incorporating autonomous or semi-autonomous capabilities
to the rover, operations from Earth can be more focused towards high level mission goals.

To achieve autonomy for high order tasks, planetary rovers need to be capable of traversing
across the terrain in an efficient and safe manner. The level of autonomy of the rover is related
to its capability to sense, represent and interpret the surrounding environment. An environment
such as the Mars surface involves a great diversity in terrain features, including highly uneven
geometry which is difficult to model, therefore accurate and reliable techniques are required
to represent the terrain surface.



Many recent advances have been made in the area of terrain modelling to better estimate
terrain geometry in areas with little or no data, such as techniques to preserve discontinuities
in terrain models [7] and incorporating visibility constraints [9] to improve the accuracy of
the estimated terrain geometry. However, these techniques have not yet been applied in the
area of space exploration to construct accurate terrain maps in unstructured environments.

Fig. 1: Mars Rover (Mawson) at the back and Scout Rover at the front in the Sydney
Powerhouse Museum Marscape

Once the environment is modelled, the rover needs to be able to interpret the data and
assess the associated risks or difficulties of traversing across the terrain. Traversability analysis
provides a metric for evaluating planning and control strategies to avoid hazardous areas, and
thus provide efficiency and safety for rover operation. Numerous techniques for evaluating
traversability metrics have been implemented in existing rover platforms with varying degrees
of success, such as the systems implemented on the NASA Mars Exploration Rovers [1] and
the LAAS Marsokhod Rover [2]. However, with advances in terrain modelling and terrain
traversability, we need to explicitly draw the connection between the two fields, i.e. perform
terrain modelling purely for the purpose of traversability, to promote synergy in the system.

In this paper we compare state-of-the-art techniques for terrain estimation and discuss the
suitability of each technique in the context of an unstructured Martian terrain. By linking
previous work in the area of terrain modelling and traversability analysis, we investigate the
effects of terrain geometry models on terrain traversability analysis for planetary rovers, in
particular the effects on estimation of vehicle attitude and configuration on terrain models
constructed using terrain estimation techniques. We also reconsider state-of-the-art terrain
model estimation techniques based on experimental data, and present limitations of current
terrain estimation methods in the application of terrain traversability estimation.

In Section II, we outline previous work in the area of terrain modelling and traversability
analysis. Section III reviews the theory behind some terrain representation, in particular Digital
Elevation Maps (DEM) and Gaussian Processes (GPs), along with the limitations of each
technique. We describe the steps taken to evaluate the traversability metric using experimental
data in Section IV. Sections V outlines the experimental setup of the rover and the Mars



Environment. In Section VI we show initial results of traversability analysis using different
terrain modelling techniques, and discuss the effects of linking terrain representation and
traversability analysis. Section VII summarises our conclusions and future work in this area.

II. Related Work

The area of terrain model estimation and terrain traversability analysis have been well
explored in each of their respective fields. Research in the area of terrain model estimation
aims to improve the accuracy and reliability of the predicted terrain geometry using available
sensor data, while the work in terrain traversability aims to best estimate vehicle behaviour
over the terrain.

A. Terrain Modelling

In the area of terrain model estimation, Digital Elevation Maps (DEMs) have been used
to create a discrete geometric representation of the terrain. Much work has been performed
to improve on Digital Elevation Maps (DEMs) to create a more complete model of the
terrain, i.e. to estimate elevation in regions of little or no data. Lang et al. proposed the
use of adaptive non-stationary kernel regression in Gaussian Processes (GPs) to deal with
varying data densities and to preserve discontinuities in terrain models [7]. Vasudevan et al.
compared the performance of different covariance functions for large scale terrain modelling,
and introduced multi-output GPs to incorporate the RGB and the elevation values in the
training data [8]. Hadsell et al. extended the traditional kernel-based learning approaches for
estimating continuous surfaces by providing upper and lower bounds on the surface [9]. This
was done by exploiting visibility constraints of the sensor to the terrain surface and applying
kernel-based regression techniques to improve the precision of the terrain geometry estimate.

B. Terrain Traversability

The development of the Grid-based Estimation of Surface Traversability Applied to Local
Terrain (GESTALT) system by Goldberg et. Al. has been successfully implemented on the
Mars Exploration Rovers (MER) Spirit and Opportunity [1]. It is based on Carnegie Mellon’s
Morphin algorithm [3,4] and is a local planner which uses stereo cameras to evaluate terrain
safety and avoid obstacles. The system uses stereo vision to calculate a disparity image, which
is mapped to a 3D Cartesian location using camera geometry to produce an elevation map.
Once the local elevation map is obtained, GESTALT determines the next best direction for
the rover to reach its goal safely. The traversability of each cell is determined by merging the
moment statistics of the set of Cartesian points on each grid cell to find the best fit plane, and
then using the plane statistics to calculate hazard measures [1]. Finally, hazard and waypoint
arc votes are used to select the set of arcs for the rover to follow until the desired waypoint is
reached. While GESTALT provides a computationally efficient method of calculating terrain
traversability, plane fitting methods may not provide accurate results specific to the vehicle.



Lacroix et al. explored the possibility of long range autonomous navigation with a 6-wheel
Marsokhod chassis [2]. On rough terrains, the chassis internal configuration is calculated from
the digital elevation map (DEM) [5] and a path is selected to maximize the interest/cost ratio.
The DEM was preferred over other methods because critical constraints to traversing over
rough terrain are stability, collision and configuration constraints, in order for the rover to
overcome terrain irregularities. The proposed technique of short-range path planning using
elevation map considers rover mobility over the terrain and also reflects the capability of
the vehicle. However, this technique can become computationally expensive as it relies on
simulation to determine vehicle configuration.

More recently, Helmick et al. presented the Terrain Adaptive Navigation (TANav) system
[6], designed to enable planetary rovers to operate more robustly over a terrain of varying
slip. The system encompasses the areas of goodness map generation, terrain triage, terrain
classification, remote slip prediction, path planning, high fidelity traversability analysis, and
slip compensated path following. The goodness map generated is based on classification of
known classes, such as rocks, sand, gravel, with predefined properties. The TANav system is
able to efficiently determine terrain traversability but is limited to the defined terrain classes
which may be limiting on the Mars surface with different terrain properties.

It can be seen that there has been significant progress in the area of terrain modelling and
traversability analysis, but little effort has been made to link the two areas of research to
develop an accurate vehicle specific traversability model.

III. Terrain Representation

To accurately predict rover response on the terrain, terrain representation need to be per-
formed in a manner that best represents the geometry and characteristics of the terrain, as
well as the associated uncertainties to determine the ”quality” of the prediction. In this section
we will be exploring representation using DEM from raw data, and using Gaussian process
regression.

A. Digital Elevation Map from Raw Data

Digital Elevation Maps are often used to model terrain surfaces. By representing the terrain
as an elevation map, the amount of stored data can be scaled using the grid size, which is
favorable in applications where memory and computational resources are limited. Using raw
data from sensors such as stereo cameras or laser range finders, a DEM can be constructed
by taking the mean elevation of the data points at each grid cell. Figure 2 shows a DEM
produced using raw data from a single instance, and it can be seen that there are areas (shown
in white) which are occluded by rocks from the sensor field of view.



Fig. 2: Digital Elevation Map Produced from Raw Data

B. Gaussian Process Regression

Even with the use of modern sensors, there always exists occlusions and areas with lower
density of data. In areas of little or no data, interpolation techniques can be used to estimate
elevation. Gaussian process (GP) regression provides a means of learning the underlying
model of spatially correlated data with uncertainty. As such, it has been the proposed method
for estimating missing information in incomplete datasets in applications such as mapping or
system identification. In our problem, we will be estimating the elevation (z) using the (x,y)
coordinates of the data point. Gaussian approaches can be thought of as a normally distributed
probability density function characterized by a mean m(x) and covariance function k(x, x

0
)

m(x) = E[f(x)]

k(x, x

0
) = E[(f(x)�m(x))(f(x

0
)�m(x

0
))]

where x =

"
x

y

#

, denoting our input variable.

The covariance function, also referred to as kernel, defines the correlation between the
random variables in the training data. A popular kernel is the squared-exponential kernel,
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An example of a DEM produced using GP regression with SE Kernel with mean affine
function can be seen in figure 3.



Fig. 3: Digital Elevation Map Produced using GP regression and Squared Exponential
Kernel with Mean Affine Function

The neural network kernel is another commonly used kernel and can be given as
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where � is the bias factor and ⌃ is the length scale matrix.

The squared-exponential kernel function is stationary, and has a smoothing effect on the
data by nature of the shape of the kernel function. Vasudevan’s work [8] showed that the
neural network kernel was more effective than the squared-exponential kernel function at
handling discontinuous data which is common in data sets containing unstructured terrain.

To learn the model using a training data set, a kernel needs to be chosen and the relevant
hyperparameters for the kernel need to be optimised. This is commonly performed by for-
mulating the problem in a log marginal likelihood framework, then solving as a non-convex
optimization problem.

Defining X and z to be the inputs and outputs from the training data respectively, the log
marginal likelihood of the training outputs z given training inputs X and hyperparameters ✓

is given by
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The log marginal likelihood has three terms - the first describes data fit, the second penalizes
model complexity, and the third is a normalization constant for the number of data points.
By minimizing the log marginal likelihood, the optimal set of hyperparameters which fit the
data set is found. In this work, the Polack-Ribiere flavor of conjugate gradients was first



used to compute search directions [10]. A line search using quadratic and cubic polynomial
approximations, and the Wolfe-Powell stopping criteria together with slope ratio method were
used to estimate the initial step sizes for gradient based optimisation.

Once the GP model is learned, it can be applied across a grid to estimate the elevation
information. This process is commonly known as Gaussian process regression.

Since the joint distribution of any finite number of random variations of a GP is Gaussian,
the joint distribution of the training inputs z and test outputs f* can be given as
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For n training points and n⇤ test points, K(X,X⇤) represents the n⇥n⇤ covariance matrix
evaluated at all the pairs of training and test points. This framework was used to estimate the
elevation information at any point in the grid given the incomplete data set shown in Figure 2.

While GPs provide a framework for estimating elevation information with uncertainty
at areas where there is sparse or no data, it has a few limitations which may render it
unsuitable for terrain geometry estimation in unstructured outdoor environments. Firstly,
GPs are implicitly continuous and assume single output value, i.e. the GP is expected to
calculate a single elevation value at each grid cell. However, this problem still exists when
producing DEMs using raw data and is a general problem to all elevation representations
where z = f(x, y). This may lead to misrepresentations of overhanging terrain features. The
second limitation is the problem of spatial correlation, which is a common limitation among
interpolation methods. This has the effect of smoothing out terrain features and thus reduces
the accuracy of the estimation of terrain geometry.



IV. Traversability Metric

To evaluate the traversability of the vehicle over the terrain, we performed a forward
propagation of discrete vehicle states over each grid cell in the DEM using a simplified model
of the Mawson Rover (Figure 4). Mawson is a six wheeled vehicle with individual steering
servo motors on each wheel. As such, the vehicle can be treated as a holonomic vehicle.
Mawson’s chassis is designed as a rocker-bogie system, which is designed to reduce motion
of the main body. By lowering the vehicle and placing it at each grid cell, the configuration
of the Rocker-Bogie suspension and vehicle attitude are simulated. A similar technique was
employed by Peynot in [5] to satisfy the configuration constraints in the articulated chassis
of the Marsokhod rover.

The simplified model of the rover can be seen in Figure 4.

Fig. 4: Simplified rover model. The black frame represents the Rocker-Bogie suspension of
the Mawson rover.

To determine the configuration of the Rocker-Bogie suspension and vehicle attitude, the
vehicle attitude is first initialised as zero in pitch, roll and yaw, and the altitude is initialised
such that one wheel is in contact with the terrain. While keeping the Rocker-Bogie joint
angles at zero, a set of heuristics was used to find the vehicle attitude to minimise the total
distance from each wheel to the ground. A similar set of heuristics was then used to find the
Rocker-Bogie joint angles.

The simulation only accounts for only static scenarios and does not yet consider the
transition of vehicle states from one cell to the next. The wheel-terrain interaction and friction



in the rotating joints of the Rocker-Bogie suspension, as well as the mass distribution of the
vehicle and payload are ignored in this simulation. It should be noted that the simulation
requires a specified yaw angle of the vehicle and determines the resulting pitch and roll
angles based on terrain geometry only.

V. Experimental Setup

The experiments were conducted with Mawson, a planetary rover named after an Australian
Antarctic explorer, which was developed at the Australian Centre for Field Robotics (ACFR).
The rover footprint is approximately 0.5 m by 0.3 m. More details about the design and
development of the rover can be found in [11].

Fig. 5: The Mawson Rover

Mawson carries an array of sensors onboard, including

• RGB-D Camera (Microsoft Kinect),
• Colour Cameras,
• Encoders on Rocker-Bogie Suspension.

For the purposes of this work, the sensor data from the RGB-D camera will be primarily
used. Using a IR emitter and IR camera, the RGB-D camera measures the time of flight of
the emitted IR beams of each pixel and builds a 2.5D map of the environment. The sensor
provides a maximum resolution of 640 by 480 pixels at 30 frames per second, has a range of
approximately 8 m, and is mounted at 1 m above the ground. It should be noted that although
the RGB-D camera may not be an appropriate sensor for some/all outdoor operations, the
geometric point cloud can also be obtained using other sensors such as stereo vision. The
conclusions of this study do not depend on the type of sensor used to acquire the geometric
point cloud.

The experiments were conducted at the Marscape at the Sydney Powerhouse Museum,
which contains rocks and inclines with varying degrees of slip and cohesion (Figure 1).
Other elements in the Mars environment, such as lighting, terrain geometry and composition,
can also be controlled and adjusted if necessary.



VI. Results and Evaluation

The following experimental evaluation was conducted on point clouds acquired with a
single sensor snapshot, representing an area of 2⇥1.75m, formatted in a grid with a cell size
of 0.05⇥ 0.05m, the vehicle attitude and Rocker-Bogie joint angles were calculated at each
grid cell. The traversability metrics were determined as the Root-Sum-Squared (RSS) of the
predicted vehicle attitude and Rocker-Bogie joint angles (radians).

Figure 6 shows the estimated terrain geometry using the Squared Exponential (SE), Squared
Exponential with Mean Affine Function, and Neural Network (NN) kernel in the GP frame-
work. The data points are denoted as red dots and the estimated terrain height denoted as
the colour coded surface. Comparing the data points to the estimated terrain height using
GP regression, it can be seen that GP regression has a smoothing effect in its estimation,
especially in areas that do not have a lot of data from the sensor. This affects vehicle attitude
and Rocker-Bogie angles and can cause the vehicle to be overconfident in its estimation of
terrain traversability. It can also be seen that the use of different kernels affects the predicted
terrain in particular areas that are not well observed. This is because the nature of the kernel
function has a much bigger effect on the prediction in areas with little or no observations, as
the assumptions about the shape of the terrain is implied in the kernel function.

(a) Using Squared Exponential (b) Using Squared Exponential with Mean Affine Function

(c) Using Neural Network

Fig. 6: Terrain Geometry using SE, SE with Mean Affine Function, and NN Kernels

In the case where traversability is determined using the DEM produced using raw sensor
data (Figure 2), occluded areas are declared as untraversable, i.e. if any of the 6 wheels
comes into contact with an area with no elevation data, the cell which the rover is on is
declared untraversable. It can be seen in figure 6 that there is a large area that is declared



untraversable in this strategy which may limit path planning options, but at the same time
is very conservative for the rover in terms of making a decision about the risks involved in
going over an area that it has no information on. It can also be seen that the affine mean
function improves the accuracy of the terrain geometry estimation by assuming an average
plane of elevation throughout the grid cells. Performing a similar traversability analysis using
the GP-generated terrain, it can be seen in Figure 6 that the smoother terrain geometry results
in a smoother change in value of traversability between cells. In rough terrains, this would
underestimate traversability, especially in areas with little or no data where terrain geometry
estimation are made using assumptions from the selection of the GP kernel.

Fig. 7: RSS of vehicle pitch and roll (top) using raw sensor data, RSS of Rocker-Bogie joint
angles (bottom) using raw sensor data

Comparing the estimated traversability using raw data (shown in Figure 7) and GPs (shown
in Figure 8) at the region from y = [0.6, 1], it can be seen that the RSS of vehicle pitch and
Rocker-Bogie joint angles in the DEM generated by raw data is visibly higher, has higher
fidelity, and less smooth than the DEM generated using GPs. This is a direct effect of the
smoothed terrain produced by GP regression resulting in underestimating traversability in an
area. Due to the continuity assumption, the terrain geometry estimated using GPs results in
smooth transition between each estimated elevation point.



In occluded areas, traversability estimated using GP methods is largely dependent on the
kernel behaviour in GP methods, as seen in the higher vehicle attitude and joint angles using
the NN kernel (Figure 9) compared with using the SE kernel with mean affine function
(Figure 8). Within these areas, the elevation estimation is highly uncertain as there are no
data points contributing towards the dataset used to train the GP, and the resulting vehicle
attitude and joint angles varies greatly based on the kernel used. Since the terrain geometry is
largely affected by the shape of the kernel in these areas, the resulting traversability estimate
will be a smooth surface with variations in elevation conditioned on data points in areas
which are visible to the sensor. This can result in underestimation of the traversability in
rough terrains, and overestimation of traversability in flat terrains. On the other hand, the
same area is simply declared untraversable in the DEM constructed from raw data, which is
a conservative approach but does not possess the same variation and uncertainty of the GP
approach.

Fig. 8: RSS of vehicle pitch and roll (top) using GP regression with SE, RSS of
Rocker-Bogie joint angles (bottom) using GP regression with SE



Fig. 9: RSS of vehicle pitch and roll (top) using GP regression with NN, RSS of
Rocker-Bogie joint angles (bottom) using GP regression with NN

VII. Conclusion/Future Work

From the results presented in section VI, it can be seen that the GP representation of terrain
geometry is inherently continuous and its smoothing nature may cause the vehicle to become
overconfident (i.e. assessing the terrain to higher traversability) in its assessment of stability.
On the other hand, building an elevation map from raw data preserves terrain geometry in
unstructured terrain. However, it is more affected by occlusion from terrain features and
lacks an uncertainty estimate of the resulting elevation geometry. The current method is to
consider all occluded terrain to be untraversable, which led to large sections of the map
to be classified as untraversable. This can lead to overly conservative estimates of terrain
traversability resulting in no possible solutions to reach desired waypoints in challenging
terrain.

As there are shortcomings and limitations to both raw data and regression based techniques,
an area of future work is to consider a terrain modelling technique purely for the purposes
of traversability analysis which would explicitly consider the vehicle-terrain interaction. To
account for sensor noise, the current approach is to assume the noise from the sensor data to
be non-coloured within the sensor operating range, and the variance in the noise is captured
to some extent in the uncertainty estimation of the GP. However, to explicitly incorporate



uncertainties in the elevation obtained from raw data, a sensor error model would need to be
developed.
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Resilient Navigation through Probabilistic
Modality Reconfiguration

Thierry Peynot, Robert Fitch, Rowan McAllister and Alen Alempijevic

Abstract This paper proposes an approach to achieve resilient navigation for indoor
mobile robots. Resilient navigation seeks to mitigate the impact of control, localisa-
tion, or map errors on the safety of the platform while enforcing the robot’s ability to
achieve its goal. We show that resilience to unpredictable errors can be achieved by
combining the benefits of independent and complementary algorithmic approaches
to navigation, or modalities, each tuned to a particular type of environment or situ-
ation. In this paper, the modalities comprise a path planning method and a reactive
motion strategy. While the robot navigates, a Hidden Markov Model continually es-
timates the most appropriate modality based on two types of information: context
(information known a priori) and monitoring (evaluating unpredictable aspects of
the current situation). The robot then uses the recommended modality, switching be-
tween one and another dynamically. Experimental validation with a SegwayRMP-
based platform in an office environment shows that our approach enables failure
mitigation while maintaining the safety of the platform. The robot is shown to reach
its goal in the presence of: 1) unpredicted control errors, 2) unexpected map errors
and 3) a large injected localisation fault.

1 Introduction

Motion planning and control of a mobile robot necessarily involves multiple sources
of uncertain information such as control uncertainty, localisation uncertainty, and
mapping errors. Current research seeks to address these sources of uncertainty by
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modelling them in the context of the planning problem [1, 5]. However, problems
arising during execution of a plan are not always predictable (and hence able to be
modelled). For example, it is difficult to predict localisation errors ahead of time, or
to anticipate which map locations actually contain large errors. We are interested in
mitigating the impact of such unpredictable errors on robot performance and safety.
We introduce the term resilience to refer to this goal. Resilient navigation seeks
to mitigate the impact of control, localisation, and map errors on the safety of the
platform while enforcing the robot’s ability to achieve its goal.

In this paper, we study resilient navigation in the context of indoor mobile robots.
We believe resilience is best achieved by combining the benefits of multiple inde-
pendent algorithmic approaches, or modalities, each tuned to a particular type of
environment or situation. The idea is to develop a set of modalities that covers the
range of possible situations, and then to reconfigure the system dynamically in re-
sponse to unpredicted errors. The key challenges are: 1) how to choose a suitable
set of modalities, 2) how to represent information that describes the robot’s context,
and 3) how to decide which modality is most appropriate at any given time. Be-
cause we are dealing with uncertain information, these challenges require solutions
in probabilistic form.

Our approach in choosing a set of modalities is to include a motion planning
strategy that requires global information, and a reactive strategy that requires only
local information. These two modalities are complementary. If the navigation goal
is within the field of view (FOV) of the robot, a reactive obstacle avoidance ap-
proach (e.g. [10, 8]) can be feasible. However, reactive approaches have known
limitations. They can become trapped in dead-ends or U-shape obstacles, and it is
difficult to obtain smooth trajectories. If the goal is located outside of the robot’s
FOV, the recommended strategy is to use a motion planning algorithm that reasons
more globally, especially if some prior knowledge of the environment is available.
In addition, smoother and more efficient paths can be obtained (see Fig. 1). How-
ever, in cluttered environments, such a strategy can only be effective if sufficiently
accurate map and global localisation are available. In addition, the control of the
platform needs to be robust and precise enough to follow the planned trajectory.

An alternative is to combine the two strategies to obtain a hybrid system [4].
Typically, a motion planning algorithm computes a global plan, generating a list
of waypoints along the computed trajectory which are passed to a reactive motion
method. A drawback of these hybrid techniques is that even if the motion planner
can produce smooth trajectories (or trajectories respecting some pre-defined con-
straints), the execution of such types of trajectories cannot be enforced. Another
inconvenience is that events that provoke failure of one of the components will of-
ten provoke failure of the combination, whereas this can be mitigated by using the
appropriate method at the right time. A comparison of the different strategies dis-
cussed in this paper is shown in Table 1.

Instead, we propose a modality-switching algorithm based on a hidden-markov
model (HMM) that considers context and monitoring information. If the system is
aware that path execution cannot safely handle a difficult situation such as a nar-
row doorway, it is appropriate to switch to a reactive strategy. This situation can be
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Table 1 Comparison of navigation strategies
Strategy: Planning Reactive Hybrid Our approach
Robust to dead-ends

p ⇥ p p

Robust to dynamic obstacles ⇥ p p p

Robust to errors in localisation or map ⇥ p p p

Optimised paths (when possible)
p ⇥ ⇥ p

evaluated using the localisation of the robot in a map, and detecting the presence
of this narrow passage. However, reasoning only on this context information will
not be sufficient to handle situations where the error/uncertainty of global localisa-
tion is high, where elements of the map have moved, or where a dynamic obstacle
has appeared. Fast local replanning integrating map updates can partially address
this problem but is computationally expensive and can lead to instabilities in con-
trol. Therefore, we propose to choose a modality based on context information and
monitoring information (such as proximity to obstacles observed from laser data).

We evaluate our approach through hardware experiments with an indoor mobile
robot in an office environment. We show that failures can be mitigated in challenging
situations while maintaining the safety and liveness of the platform. The situations
we consider include: control errors, localisation errors, map errors (unexpected ob-
stacles), and presence of an “aggressive” human dynamic obstacle.

(a) PLAN (b) REACT (Hybrid)

Fig. 1 Trajectory obtained using a planner (a) and a hybrid approach (b). Obstacles in the map
are in black. Circles represent the radius of the robot. Approximate size of the area shown:
6.5m⇥7.5m.
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2 Related Work

Previous work has considered multi-modal systems for the navigation of an indoor
mobile robot. [11] proposed the Robel system: a robot controller that learns different
ways of combining sensory-motor functions to achieve a navigation task. Robel
uses a Markov decision process (MDP) to provide a policy. However, MDPs are
generally computationally expensive and policies often have to be computed off-
line or at low frequencies. Our system was designed to be efficient enough for the
robot to be reactive: modality switching can happen quickly when needed. Besides,
an MDP requires the states to be fully observable. [15] proposed a system based
on a partially observable MDP (POMDP) that can be used to detect, diagnose and
recover from faults. However, the policy is computed off-line and the robot does not
have a real alternative navigation modality when the path planning strategy fails.
Our approach does not require explicit detection and identification of specific faults
such as a localisation error; it focuses on mitigating failures that could occur in
consequence, finding alternatives to obtain robustness while maintaining safety.

Motion planning and obstacle avoidance are well-studied problems in the litera-
ture. See [6] for a comprehensive review up to 2005. More recently, researchers have
sought to address motion planning under uncertainty in control [1], localisation [5]
or sensing and environment map [9]. However, these studies typically require the
ability to predict possible errors, as they need to model the uncertainty in the con-
text of the planning problem. In this paper, we are interested in mitigating the impact
of unpredictable errors.

3 Probabilistic Modality Reconfiguration

The approach we propose is a probabilistic framework for an indoor robot endowed
with two main navigation modalities: 1) a global planner (PLAN), and 2) a reactive
motion approach (REACT). In addition, a STOP modality is included for emergency
and safety. This method builds on our previous work for an outdoor mobile robot
with modalities appropriate to flat terrain and rough terrain [13].

Our approach is to estimate the likelihood of each modality being most suitable
using an HMM. The HMM is appropriate since states are not directly observable and
it provides a time integration that prevents jitter (too frequent modality changes, see
Fig. 5). Crucially, the probabilistic approach allows the system to handle uncertainty
in the different sources of information.

The goal of the HMM is to provide a modality recommendation. The HMM is
constructed such that the number of states is equal to the number of available modal-
ities. Fig. 2 provides a graphical representation of our three-state HMM, where each
state xk corresponds to the proposition: “modality mk is the appropriate modality to
apply at this point in time.”

Two categories of information are input to the HMM: 1) context information is
global environmental knowledge known a priori, and 2) monitoring information is
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online execution knowledge of the observed immediate situation. The framework
is designed as a Markov conditional estimation system [2]. It estimates the condi-
tional state xk,t at time t, knowing context observation until time t, O1:t , and online
monitoring information M1:t . If the robot is endowed with N different modalities,
the probability that mk is the appropriate modality to apply at time t can be written,
8k 2 [[1,N]],

P(xk,t |O1:t ,M1:t) µ P(Ot |xk,t)
N

Â
i=1

P(xk,t |xi,t�1,Mt)P(xi,t�1|O1:t�1,M1:t�1) (1)

where P(Ot |xk,t) is an observation probability (computed using the context informa-
tion), and P(xk,t |xi,t�1,Mt) is the conditional probability of transition from state xi
to state xk, knowing the monitoring data Mt at time t. The following sub-sections
describe more specifically the different modalities of the robot used in this paper
and the nature of the context and monitoring information.

PLAN REACT

STOP

x0

x2

x1

p0,1

p1,0

p0,2
p2,0 p2,1

p1,2

Fig. 2 Graphical representation of the 3-state HMM

3.1 Context

The context information relates to the distance d from the robot boundaries to the
closest obstacles as seen on an a priori global map. This information is used to
predict the likely modality at a given map location. We determined experimentally
that the PLAN modality is likely to fail in situations where the robot is too close to
obstacles, i.e. closer than a security distance ds = 0.15m, equal to half the radius of
the robot. Therefore, intuitively, the a priori recommendation based on context in-
formation is to use PLAN in areas sufficiently clear from obstacles (d > ds), REACT
in areas that are close to an obstacle on the global map (d  ds), and STOP in places
immediately proximal to obstacles (d < dc, critical distance).

d (the observation Ot ) is calculated online using the current localisation of the
robot in the map. To integrate this observation in the system (HMM), probability
density functions (pdf) are used to take into account uncertainties. The main sources
of uncertainties are the (x,y) localisation of the robot in the map and the location of
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the obstacles in the map itself. The map is an occupancy grid that was built using the
laser of the robot assuming perfect localisation. Therefore, the map uncertainty can
be expressed as smap = slaser, the standard deviation of the range measurements of
the laser scanner. slaser = 0.03 m for the Hokuyo laser on our robot.

The uncertainty in the a priori map is independent of the uncertainty of the cur-
rent localisation, as the map was built beforehand, using a different localisation.
Therefore, the standard deviation on the observation of d can be expressed as the
sum of the uncertainties: s = smap + sloc, where sloc represents the localisation
uncertainty provided by the algorithm mentioned in Sec. 4.

3.1.1 Modality STOP

We define the distribution of p(Ot |x2), or p(d|STOP), as an inverse sigmoid centred
on the critical distance dc (see Fig. 3 in red):

P(d|STOP) = 1� 1�a
1+ e�(d�dc)/s (2)

where s partly defines the curvature of the sigmoid. s (similar to the standard de-
viation of a Gaussian) corresponds to the uncertainty in d, and dc = 0 is the critical
distance.

The distribution p(d|STOP) represents the likelihood that observation d is made,
knowing that the robot should stop. The inverse sigmoid accounts for the uncertainty
in the observation and in the knowledge of this threshold value. The limit of this
sigmoid, when d tends to infinity, is superior to zero (see Fig. 3). This accounts
for the fact that the map does not capture all information in the world, in particular
dynamic obstacles. The value of this limit represents the chance of having to stop the
robot while infinitely away from map obstacles, i.e. the chance of having a dynamic
object appearing withing less than dc of the robot, a . It is crucial to account for
the possibility of this event sufficiently so that the system maintains a chance of
capturing it [7]. Thus, this value is set to a value higher than the actual probability
of occurrence as would be determined statistically. In our implementation we set
a = 0.05.

3.1.2 Modality REACT

The distribution of p(Ot |x1), or p(d|REACT ), is defined as a sigmoid centred on dc
(see Fig. 3 in blue):

P(d|REACT ) =
1� (a + g)

1+ e�(d�dc)/s (3)

where s = smap +sloc, as defined earlier. To guarantee safety, the main restriction
for this modality is that it cannot be used too close to obstacles (d < dc), hence the
sigmoid.
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Fig. 3 Probability density functions for the context information (shown before normalisation, with
sloc = 0). These are functions of d, representing the distance to the closest obstacles to the robot,
as seen in the map.

There are two secondary restrictions. One consideration is the chance of a dy-
namic object appearing within a distance dc to the robot, i.e. a = 0.05. The other is
the a priori chance of failure of REACT in general, even in an open map (recall that
this modality is subject to local minima). This chance of failure highly depends on
the environment, which we capture with the probability: g = 0.20. Considering the
events represented by a and g as independent, the limit of the sigmoid p(d|REACT )
when d tends to infinity is set to 1� (a + g) = 0.75.

3.1.3 Modality PLAN

The distribution of p(Ot |x0), or p(d|PLAN), is also defined as a sigmoid, centred on
the security distance ds (see Fig. 3 in green):

P(d|PLAN) =
1�b

1+ e�(d�ds)/s (4)

Note that once again the limit of the sigmoid p(Ot |m0) when d tends to infinity is
lower than 1. This accounts for the chance of having dynamic objects appearing
within ds of the robot bounds. We consider the prior probability of this event to be
b = 0.10 (b > a), therefore the limit of the sigmoid distribution is 1� b = 0.9.
For high values of d it is important to set the chance of success of PLAN higher
than REACT (if the goal is far, it is known that PLAN is more likely to succeed),
i.e. b < a + g . Finally, note that these distributions need to be normalised before
integration in the HMM.
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3.2 Monitoring

Contrary to context information, the purpose of monitoring information is to check
the actual “appropriateness” of the current situation, with regard to the possible
modalities, using data only observable during execution. The online monitoring uses
d , the distance from the robot bounds to the closest obstacle detected in laser mea-
surements. Recall that the online monitoring contributes to the computation of the
transition probabilities of the HMM. If the robot gets too close to obstacles seen in
current laser scans while operating in PLAN, it should switch to REACT. In this way,
if global localisation is temporarily inaccurate, or if obstacle points are in a different
location than on the (static) global map, this situation can be handled by REACT,
contrary to PLAN.

More specifically, the intuitive rules of transitions (given here without uncer-
tainty, for convenience) are the following. The corresponding transition probabili-
ties used in the HMM are given in parenthesis, in both full (e.g. P(x2|x1,d )) and
equivalent reduced form (e.g. p1,2). First, let us consider the output transitions of x0
(i.e. PLAN).

• The transition P(x1|x0,d ) = p0,1 (PLAN to REACT) is likely if dc < d < ds, i.e.
an obstacle is detected by the laser in the intermediate proximity of the robot.

• The transition P(x2|x0,d ) = p0,2 (PLAN to STOP) is likely if d < dc, i.e. an
obstacle is detected by the laser in the immediate proximity of the robot.

• P(x0|x0,d ) = p0,0 (PLAN to PLAN) is likely if d > ds, i.e. the robot is clear from
obstacles.

The other transitions can be defined similarly, using the same short notations as
above: p1,0 = p2,0 = p0,0, p1,1 = p2,1 = p0,1, p1,2 = p2,2 = p0,2.

Because of the uncertainty in d (the laser measurements), these rules are defined
probabilistically using sigmoid distributions similar to those defined in Sec. 3.1 and
shown in Fig. 3. In this case the main source of uncertainty is the relative inaccuracy
of the laser measurements, therefore the s of the sigmoids is: s = slaser. The output
transition probabilities from each state are normalised, as their sum must equal 1.

4 Implementation

Our experimental platform consists of the Segway RMP100 base with onboard PCs
and various sensors, including a Hokuyo UTM-30LX laser range-finder and en-
coders in the mobile base for odometry [12]. Localisation is computed using the
Monte Carlo Localisation (MCL) algorithm [14]. The robot’s belief is represented
by a set of weighted hypotheses which approximate the posterior under a common
Bayesian formulation of the localisation problem. We update this distribution using
data from odometry, the laser range-finder, and a predefined map of the environ-
ment.
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The test area is an office environment occupied by over 25 people and consisting
mainly of student workstations and fixed and movable furniture. This area is thus
well-suited for evaluating real-world applicability.

4.1 Available Modalities

Modality m0 is PLAN. We implemented the well-known Latombe Grid-Search al-
gorithm [3] for nonholonomic planning, customised to find paths with minimum
change in curvature. Although the name may seem to imply a discrete search space,
the algorithm does use continuous coordinates. A detailed summary can be found in
[6]. The planner is complete with respect to the resolution of its given proximity grid
and time interval of the path set [3]. Because this proof is not constructive, we do not
have a method for determining parameter values analytically. We hand-tuned them
empirically and found a reasonable grid resolution of 0.2m⇥0.2m⇥ p

8 rad and path
set time intervals of 2 or 4 seconds. Our path set has angular velocities chosen from
{�p

4 ,�p
8 ,� p

16 ,� p
32 ,0, p

32 , p
16 , p

8 , p
4 } and linear velocities from {0.2m/s,0.1m/s}.

Our priority queue uses a cost function that combines minimum distance to goal
with minimum change in curvature.

Modality m1 is REACT. This is a reactive collision avoidance method that avoids
sensed obstacles. We implemented a potential field method derived from a model
of human navigation [8]. This method directly controls angular acceleration and
produces smooth paths. We chose this method because the robot operates in an
office-like environment amenable to human-like paths. Because the laser cannot
scan all 360� around the robot, the perception data that REACT uses is a local fusion
of laser scans. Odometry is used for localisation in order to avoid the influence of
errors in global localisation.

Modality m2 is STOP. This is the safety modality; it applies when the robot has
come too close to an obstacle and the only reasonable option is to halt. If STOP was
provoked by monitoring information, the robot can only resume when the obstacle
responsible for the stop is dynamic and has moved away. To account for this, our
system continues to evaluate the HMM recommendation even though the robot is
stationary.

4.2 Modality Switching

PLAN is the default starting modality, as it has the highest prior probability. When
switching from PLAN to REACT, a goal waypoint must be chosen. We initially
choose the next waypoint on the last path computed by PLAN. However, because of
localisation or map errors, this waypoint may intersect an obstacle. In this case, the
next waypoint of the plan that is confirmed as clear from obstacles becomes the new
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goal for REACT. It is then preferable to switch back to PLAN quickly to avoid the
risk of REACT falling into local minima.

5 Experiments

The experimental validation in this section illustrates the resilience of our proba-
bilistic reconfiguration approach, which allows the mitigation of unpredictable fail-
ures. Examples of causes of such failures are: errors of the controller while exe-
cuting a planned path, errors in the map (i.e. presence of objects that could not be
integrated in the map early enough) and large localisation uncertainty or error. We
also compare our method to simple threshold rules for modality switching. Results
were obtained using the platform described in Sec. 4.

The illustrations show the estimated robot trajectory during each test, using
coloured points to represent the modality used at the time. The selected modality
corresponds to the highest output probability P(xk,t |O1:t ,M1:t) at each time step t.
The HMM and the modality selection were updated at 10Hz.

5.1 Modality Reconfiguration in Static Environment

5.1.1 Unpredicted Control Error

The experiment in Fig. 4(a) illustrates how our framework allowed the system to
maintain the robot’s safety in the presence of unpredicted errors of the controller
during execution of the planned trajectory. The robot started executing a planned
path similar to the one in Fig. 1(a), which was successful using PLAN only. How-
ever, at the (expected) end of the turn around the first corner, the controller “over-
shot”, risking the safety of the platform. This event was detected by our system,
which switched to REACT to recover. When safe, the robot returned to the PLAN
modality to complete its mission.

5.1.2 Going Through a Narrow Doorway

We also tested the robot’s ability to follow a corridor and then pass through a 0.85m-
wide doorway (the robot’s diameter is 0.6m). As the corridor is reasonably large
(about 1.7m in average), the robot first used PLAN and only switched to REACT to
negotiate the doorway passage.
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(a) Control error (b) Error in map: unexpected obstacle
(grey box)

Fig. 4 Examples of robot trajectory executed with modality switching. Known obstacles in the
map are shown in black, while the colour points show the (estimated) positions of the centre of
the robot. Green means the recommended modality is PLAN, while blue means the recommended
modality is REACT. Approximate size of the area shown: 6.5m⇥7.5m.

5.2 Unexpected Map Error and Comparison to Simple Threshold
Rules

Fig. 4(b) shows another example of modality switching to negotiate an unexpected
situation safely: an unpredictable large error in the map. This situation is caused by
the presence of an unexpected obstacle. This simulates a map error. In order to avoid
the box, the robot switches to REACT, then returns to PLAN once the situation is
safe and the map is more consistent with the current observation. A likely collision
was thus avoided.

Fig. 5 illustrates a similar test using a recommendation based on simple logical
rules comparing d and d to “hard” thresholds equal to dc and ds. It can be seen that
such strategy can provoke frequent undesirable modality switches, contrary to the
HMM of our approach.

5.3 Presence of Dynamic Obstacles

We validated that the robot is resilient to the presence of highly dynamic obstacles.
In the test shown in Fig. 6(a), a pedestrian coming from the top left of the scene
walked quickly towards the robot. On approach, the robot first switched to REACT
and then tried to evade (event C). Once the human had left the vicinity, the robot
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(a) Map error: unexpected obstacle (b) Modality recommendation:
0=PLAN, 1=REACT

Fig. 5 Comparison with a simple threshold strategy. The robot encounters an unexpected obstacle
in (a). (b) shows the chosen modality over time for the 10s surrounding event A in (a). Modality
switching with fixed thresholds results in unacceptable oscillation (top) compared to our method
(bottom).

could resume its mission. A similar situation occurred again later in the test, with an
even more sudden appearance of the human in the FOV of the robot. This event was
again safely handled by the robot. This test shows that, although the robot can nom-
inally execute optimised trajectories, it can also safely react to dynamic obstacles,
comparably to a pure reactive motion strategy.

5.4 Injected Localisation Fault

In this experiment, a significant localisation fault was artificially created by intro-
ducing a sudden and unexpected offset of 1m to the output of the localisation esti-
mator. Fig. 6(b) shows the clear offset to the right between the estimated position
and the reality. However, the robot was still able to safely achieve its mission by
switching to REACT when appropriate.

The context information is shown in Fig. 7 and the corresponding partial proba-
bilities of modality recommendation are shown in Fig. 8. The moment of the local-
isation fault injection is clearly visible at t = 35s (event D) on both figures. Fig. 7
indicates that with context information alone the robot should definitely STOP. If the
robot could rely only on its current global localisation estimate and map, it would
not have been safe to continue, since according to its estimated position the robot
appears to be on the location of known obstacles in the map (see Fig. 6(b)). How-
ever, our system recommended a better alternative: a prudent switch to REACT. The
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(a) Dynamic obstacle (b) Localisation fault

Fig. 6 (a): Presence of highly dynamic obstacles (events C). (b): Modality switching with injected
localisation fault (sudden offset to the right of 1m, see D). As a result, the estimated positions of
the robot appear to be on the right wall (blue line). The magenta dashed line shows the reference
localisation.

Fig. 7 Partial probabilities for context information, corresponding to the test in Fig. 6(b).
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Fig. 8 Partial probabilities for all three states (i.e. modality recommendation), corresponding to
the test in Fig. 6(b).

localisation algorithm then progressively corrected its estimation up to a point when
the situation became comfortable enough again to use PLAN to finish the mission.
This shows our system to be resilient to large unpredicted localisation or map errors.

6 Conclusion

We have shown that a multiple modality strategy for resilient navigation, based on
a probabilistic framework, can be applied to an indoor mobile robot to combine the
advantages of navigation modalities while maintaining the safety of the platform. In
our implementation, the robot is able to plan and execute smooth paths (minimising
change in curvature) when possible, while being very reactive when needed. The
system was applied online and shown to be reliable and robust in the presence of
map errors and large localisation uncertainties or offsets. The concept is demon-
strated with one choice of planning and reactive modality, however, these planning
and reactive methods are easily interchangeable.

Future work will exploit the monitoring and context information for diagnosis
and recovery of particular components of the system. Currently, both types of in-
formation are only exploited to compute a modality recommendation. However, we
saw in Sec. 5.4 that the discrepancy between context and monitoring indicates a
likely error in the map or global localisation. This could be used to actively repair
these components, while the robot uses a reactive modality.
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Motion Planning and Stochastic Control with
Experimental Validation on a Planetary Rover

Rowan McAllister, Thierry Peynot, Robert Fitch and Salah Sukkarieh

Abstract— Motion planning for planetary rovers must con-
sider control uncertainty in order to maintain the safety of the
platform during navigation. Modelling such control uncertainty
is difficult due to the complex interaction between the platform
and its environment. In this paper, we propose a motion
planning approach whereby the outcome of control actions
is learned from experience and represented statistically using
a Gaussian process regression model. This model is used to
construct a control policy for navigation to a goal region in a ter-
rain map built using an on-board RGB-D camera. The terrain
includes flat ground, small rocks, and non-traversable rocks.
We report the results of 200 simulated and 35 experimental
trials that validate the approach and demonstrate the value of
considering control uncertainty in maintaining platform safety.

I. INTRODUCTION

Motion planning for mobile robots in unstructured envi-
ronments must consider various forms of uncertainty. One
significant source of uncertainty in outdoor terrain is control
uncertainty. Robots such as planetary rovers are designed
for mobility in challenging environments, but understanding
the associated control uncertainty for the purpose of motion
planning is difficult due to the complexity of this type of
environment. It is critical to consider control uncertainty in
motion planning, particularly in environments that expose
the robot to the risk of serious mechanical damage. We
are interested in this problem in the context of planetary
rovers [1]. Our goal is to navigate while maintaining the
safety of the platform in potentially dangerous terrain.

The goal of classical geometric motion planning is to
minimise time or distance while avoiding obstacles [2].
The conceptual distinction between free space and obstacles
for planetary rovers, however, is less clear. It is important
to avoid obstacles, but it is also desirable to avoid free
space where, due to control uncertainty, the robot has high
likelihood of encountering an obstacle during execution. This
situation cannot be modelled by simple distance thresholds
surrounding obstacles because risk varies across free space,
and is probabilistic.

Accurately predicting executed behaviour in response to
a given control input is difficult for planetary rovers due
to complex terramechanics [3]. For previously unobserved
terrain, prior models of terrain properties may not be avail-
able. It is thus important to model control uncertainty with a
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Fig. 1. Planetary rover “Mawson” used for experimental validation, shown
in the Mars yard at the Powerhouse Museum in Sydney, Australia.

method that can be feasibly executed online during operation
of the robot, and to validate such a model experimentally.

Our approach is to build a statistical model directly from
observed behaviour, represented as a Gaussian process (GP).
We consider uncertainty in the heading of the platform and
in distance travelled. We use this GP model to build a
stochastic transition function for use in motion planning. The
planning goal is to compute a policy that allows the robot
to reach a given goal location while maintaining the safety
of the platform. We assume that a map of the environment
is available, represented as a digital elevation map. Platform
safety is represented by a cost function over this terrain map,
which is constructed a priori using on-board sensors. We
compute the policy using dynamic programming (DP), where
the resolution of discretised geometric states is equal to that
provided in the elevation map.

In this paper, we present the details of our approach and its
implementation for the planetary rover shown in Fig. 1. The
environment consists of flat terrain, traversable rocks, and
non-traversable rocks. We learn GP models for rock traversal
that map environment features to a distribution of resulting
rover configurations (in state space) for two types of control
actions. The cost map is constructed from data collected by
an on-board RGB-D camera. We report results from 200
simulated and 35 experimental trials that evaluate the rover’s
ability to traverse flat terrain and small rocks while avoid-
ing non-traversable rocks. We compare rover performance
in executing policies constructed with and without control
uncertainty. Our results show empirically that planning with
control uncertainty improves the rover’s ability to navigate
while avoiding non-traversable areas, and demonstrate the
value of planning under uncertainty for planetary rovers
using a real platform in a realistic environment.



II. RELATED WORK
A common approach for considering control uncertainty

in motion planning is to express the uncertainty as a cost
and then to plan a path that minimises this cost assuming
deterministic control [4], [5]. Another family of approaches
plans a path using a sampling-based algorithm, and then
evaluates the control uncertainty along the path selected [6],
[7]. In classical motion planning, the desired path is provided
to a feedback controller for execution. Various forms of
control strategies (such as LQG) can be used to model
potential deviations from the path and hence to select a path
with least risk in terms of platform safety [8], [9].

For non-determinisitic systems Markov decision pro-
cesses (MDPs) are commonly used to formulate problems in
motion planning with uncertainty [2], [10]. Control uncer-
tainty is represented as a stochastic transition function, and
a policy can be computed using dynamic programming [11].
The partially-observable Markov decision process (POMDP)
is another common formulation [11]. However, these tech-
niques are most often evaluated in simulation only and there
is a critical need for further validation using real robots.

Recent work by Brooks and Iagnemma [12] models con-
trol uncertainty as a function of terrain in a self-supervised
learning framework. This approach uses visual features to
classify terrain types and learn associated proprioceptive
mechanical properties.

Finally, physics-based approaches that study terramechan-
ics provide detailed mobility models by considering fea-
tures such as soil cohesion and density [13]. Statistical
mobility prediction using terramechanics has been proposed
that generates a Gaussian distribution over predicted future
states on homogeneous terrain [3]. However, it is difficult to
precisely model non-homogeneous terrain that includes rocks
of different sizes and shapes that may move in reaction to
the force exerted by a rover wheel.

In our work we directly search for a path with low
risk of entering a non-traversable area, but our model of
stochastic actions is tied to observed environmental features
that vary across the terrain and learned through experience.
We furthermore consider risk at the level of primitive actions
and construct a policy that is executed directly. Our approach
uses statistical regression techniques in performing the in-
ference and direct learning is applied showing meaningful
improvements to motion planning are possible without a
complex terramechanics model.

III. MOTION PLANNING AND LEARNED
CONTROL UNCERTAINTY

With the aim of reaching a given goal region safely
while optimising the total cost of traversal over the exe-
cuted trajectory, our approach is to take into account the
stochasticity of the control of the robot at the planning stage.
This requires modelling the control uncertainty, which we
achieve by experience, using machine learning. This section
first describes the planning algorithm used in our approach
(Sec. III-A), followed by the presentation of the learning
technique used to model the control uncertainty (Sec. III-B).

A. Planning Algorithm

We compute a control policy for the robot using dynamic
programming (DP). DP computes an optimal policy with
respect to a discrete set of (stochastic) primitive motions
and given resolution of the state space [2]. DP is a feasible
method in low dimensional state spaces; in our problem the
state s can be defined using two lateral dimensions x and y

and one dimension for orientation  , i.e., s = {x, y, }.
This formulation treats the motion planning problem as a

Markov Decision Process, assuming accurate localisation and
stochastic control. The optimal motion policy is computed
using the Bellman optimality equation iteratively:
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where s is the robot state (discretised into uniform cells),
a is an action (or motion primitive) from the action set A,
and � = 1 is the discount factor. The transition function
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where the reward R(s

0|s, a) is computed from a cost map
that represents the difficulty of the terrain. P (s

0|s, a) is not
known a priori. Therefore, these state transitions are learned
from experience, as described below.

B. Learning-based Mobility Prediction

P (s

0|s, a) can be expressed using a PDF of the relative
transition between states, p(�s|s, a), where �s ⌘ s

0 � s:
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where f(s1, s2) = 1 if the discretisation of s1 corresponds
to s2 and f(s1, s2) = 0 otherwise. In unstructured terrains,
�s may strongly depend on factors such as the terrain
profile along the executed path and also the action executed.
Terrain profiles are represented by a vector of features (or
characteristics): �(s, a). Therefore, p(�s|s, a) is learned as
a function of �(s, a) and a:

p(�s|s, a) = p(�s|�(s, a), a). (4)

The estimation of relative change in state is achieved
using Gaussian Process (GP) regression. GP is a standard
framework to learn a model of spatially correlated data and
provides estimations with uncertainty. The GP framework is
especially effective in cases where the input data are sparsely
populated.

We use the GP formulation from [14]. The input vector x

is a function of the terrain features, shifted such that the
input has zero mean, i.e., x = �� ¯

�

train

, where ¯

�

train

is the mean of each terrain feature in the training data.
We define �s

i,a

as the i

th single-valued component of the
change of state �s resulting from executing action a. We
define a GP for each �s

i,a

, i 2 [[1, N ]], a 2 A, where
N = Dim(s). The output value y

i,a

of one of these
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The covariance function used to describe the spatial corre-

lation between two input vectors is the squared exponential:
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where �2
f

is the input variance and ⇤ is a length scale matrix
of diagonal elements that describes the smoothness of the
input data. The predictive distribution is given by a Gaussian,
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with predictive mean
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where X is the n⇥m matrix of all n training input vectors,
Y is the n⇥1 vector of all training output values, and x⇤ is
the test input vector. K(X, x⇤) is a covariance matrix which
stores the covariance of each training input value against the
test input values.

Thus, p(�s

i,a

) can be computed for untraversed terrain
profiles using Eq. (6), where the test input vector x⇤ has not
been observed directly but rather estimated by employing a
kinematics model of the robot over the series of states that
would be traversed by executing action a from state s.

Finally, our planner considers the uncertainty in each
component �s

i

separately by using the full distribution
learnt from �s

i

and the expectation of the other components.
Representing �(s, a) as �, Eq. (4) is calculated as:
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C. System Outline
Fig. 2 shows an outline of the system. Once an elevation

map of the robot’s local environment has been computed, a
kinematics model is used to estimate both the terrain profile
characteristics and cost of traversal (R(s

0|s, a)) at each state-
action pair. Characteristics of the terrain profile, as observed
by the Inertial Measurement Unit (IMU) and the localisation
system, are used as input data to train the GP offline. The
GP can then be used to estimate the stochastic transition
function P (s

0|s, a) on terrain similar to that encountered
during training. Using both P (s

0|s, a) and R(s

0|s, a), the
motion planner computes the value function (Eq. (1)) over
the observed state space to follow greedily as per the policy
given in Eq. (2).

IV. IMPLEMENTATION
This section describes the implementation of the proposed

approach on our experimental Mars rover shown in Fig. 3(a).

Fig. 2. System Outline. Colours indicate perception (red), offline learning
(yellow), estimation (blue) and planning (green).

(a) Mawson (b) Orientation and Internal angles

Fig. 3. The Mawson Rover (a) and its chassis configuration (b).

A. The Robot

Mawson is a six-wheeled rover with individual steering
servo motors on each wheel and a Rocker-bogie chassis. The
platform is equipped with:

• an RGB-D camera (Microsoft Kinect) mounted on a
mast, tilted down 14�, used for terrain modelling and
localisation,

• a 6-DOF IMU used to measure the roll (�) and pitch
(✓) of the robot,

• three potentiometers to observe the configuration of the
chassis by measuring both bogie angles and the rocker
differential (↵

i

in Fig. 3(b)).

For localisation and terrain modelling we use the
RGB-D SLAM algorithm [15], implemented in the Robot
Operating System (ROS) [16], which uses data from the
RGB-D camera to perform simultaneous localisation and
mapping (SLAM) online. An elevation map is generated
from the point clouds supplied by the RGB-D camera by
distributing elevation points in a regular Cartesian grid. The
grid resolution is 0.025m⇥ 0.025m.



B. Kinematics Model

To predict the attitude angles {�, ✓} and chassis configura-
tion {↵2�↵1,↵3,↵4} of the rover at given positions on the
elevation map, we use a method similar to [17]. Although it
does not take into account the dynamics of the platform, this
simplified model is a sufficient approximation since the rover
operates at low speeds. This kinematics model is used to:
1) estimate terrain profile characteristics for (s, a) pairs the
planner queries, and 2) compute a cost map of the observed
terrain (see Fig. 2).

1) Feature Map: From the estimates of the configurations
of the rover on the map, a feature map is built for each (s, a)

pair using the GP model to predict P (�s) for each (s, a)

pair the planner considers.
2) Cost Map: The cost function chosen to generate the

cost map from the elevation map penalises large absolute
values of roll, pitch, and configuration angles of the chassis
at a given position s = {x, y, }:

cost

terrain

(s) = (cost

�✓

(s) + cost

↵

(s))

2
, (8)

where

cost

�✓

(s) = (�

2
+ ✓

2
), (9)

cost

↵

(s) = (↵2 � ↵1)
2

+ ↵

2
3 + ↵

2
4. (10)

Since the configuration of the robot at a given position on
the elevation map depends on its orientation, a 2D (x, y) cost
map needs to be generated for each discretised orientation.
The result is a 3-dimensional (x, y, ) cost map.

C. Planning

1) State Space: As mentioned in Sec. III-A, the rover’s
state s is defined as its position and orientation:

s , {x, y, } 2 R3
. (11)

This definition specifies all other orientations and internal
angles (�, ✓,↵

i

) at each state using the kinematics model.
State resolution was required to be smaller than the uncer-
tainty bounds of resultant positions of actions in order for
uncertainty to be considered by the DP. A discretisation of
0.025m⇥ 0.025m⇥ ⇡

32rad is sufficient.
2) Action Set: We define two action types for the rover:

crabbing and rotation. Crabbing corresponds to executing a
straight line translation in the xy-plane by a given distance
and heading, with no change in  , and constant linear
velocity (0.11m/s). The rover is able to crab in any direction.
Rotation is a spin-on-the-spot motion primitive at constant
angular velocity (0.24rad/s). It changes  by a given
magnitude. In total, the action set A is composed of 2 rotation
and 8 crabbing motion primitives:

A ,
�

rotate (⇡/4) , rotate (�⇡/4) ,

crab (0.3m,n⇡/4) 8n 2 [[�3, 4]]

 

. (12)

Restricting the actions to this set was the result of a trade-off
between rover dexterity and algorithm complexity.

3) Reward Function: The reward R(s

0|s, a) of an action
is defined as the negative of the average cost of states that
lie on a linear interpolation between a start state s and a
resultant state s

0:

R(s

0|s, a) = �⇠ � 1

K

K

X

i=0

Cost

⇣
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x

+

i

K
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0
x

� s

x

),

s

y
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i
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(s

0
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� s

y
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+
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K

(s

0
 

� s

 

)

⌘

,

(13)

where ⇠ = 0.003 is a small penalty used to deter excessive
motions on flat terrain and K is the sampling resolution.

D. Learning and GP

To achieve mobility prediction from training data, we used
the GP implementation from [14]. These training data were
obtained through experimental runs of the rover executing
each action a from A multiple times, while logging dis-
cretised sets of {�, ✓, time, s, a} continuously. The training
data collected comprise the rover’s attitude angles, provided
by the on-board IMU, and the deviation from the expected
motion when executing a given action, measured using the
localisation system. Due to the left-right symmetry of the
platform, training was only required on 6 of the 10 actions
from A (Fig. 4 shows which set of training data can be
combined between symmetric actions).

Due to slow localisation updates, �s could only be mea-
sured at the end of each action primitive. However, multiple
values of {�, ✓} were recorded during the execution of an
action primitive, resulting in a vector of these values {�,✓},
representing the terrain profile. Terrain profiles were encoded
more compactly by extracting features of the evolution of
{�,✓} to avoid overfitting. A combination of terrain profile
features were tested with GP regression using cross valida-
tion. The features (vector of functions �) which produced
the lowest Root Mean Square error between the GP mean
estimations and test datum output were chosen:

� , {�1,�2,�3,�4}, (14)

where

�1(�,✓) = max(�

j

� �

i

), 8i, j : i < j (15)
�2(�,✓) = min(�

j

� �

i

), 8i, j : i < j (16)
�3(�,✓) = max(✓

j

� ✓

i

), 8i, j : i < j (17)
�4(�,✓) = min(✓

j

� ✓

i

), 8i, j : i < j, (18)

i.e., largest increase of �, largest decrease of �, largest
increase of ✓ and largest decrease of ✓ during an action
primitive.

When planning over previously untraversed states, � and
✓ are estimated using the kinematics model from a state-
action pair: ˆ

�(s, a) and ˆ

✓(s, a). The � functions are then
applied to these estimates, which are input to the GP. Thus,
the expression

p(�s

i

|�(s, a), a) = p(�s

i

|�(

ˆ

�(s, a),

ˆ

✓(s, a), a))

is substituted in Eq. (7).



The components �s

i

of �s (see Sec. III-B) were defined
according to radial coordinates, as per the control space of
crabbing and rotations, opposed to the Cartesian representa-
tion of the state space {x, y,�} itself. The �s

i

components
we consider are heading and distance travelled for crabbing
actions

�s1 = �s

head

= atan2(�y, �x) (19)
�s2 = �s

dist

=

p

(�x)

2
+ (�y)

2
, (20)

and yaw for rotation actions

�s3 = �s

yaw

= � . (21)

Therefore, �s is represented by the tuple

�s , {�s

head

,�s

dist

,�s

yaw

}. (22)

In the rest of the paper, we define control errors (�s) as
the difference between observed change in state (�s) and
“ideal” change in state ( ˜

�s) (i.e., if the controller followed
the action-command perfectly); i.e., �s = �s� ˜

�s, a tuple
analagous to Eq. (22).

V. EXPERIMENTAL RESULTS

We evaluated our approach both in simulation and through
experiments with a planetary rover robot. Our experimental
methodology consisted of two phases. First, we learned
statistics of control error through empirical trials, described
in Sec. V-A. Then, we performed navigation experiments us-
ing these learned data to build the motion planner’s stochastic
transition function. Sec. V-B describes experiments in sim-
ulation, and Secs. V-C and V-D describe experiments using
the robot.

Experiments were conducted in the Mars Yard environ-
ment shown earlier in Fig. 1. This environment is 117m

2 in
area and was designed to reproduce typical Martian terrain.
It contains rocks of various sizes, small craters, and various
grades of sand, dirt and gravel.

A. Training on Flat and Rough Terrain

Training was conducted for two cases: flat-terrain traversal
and rough-terrain traversal. For the flat terrain case, control
errors were learned by executing multiple runs for each
action. Rough-terrain training additionally involved traversal
of various rocks (one at a time).

In flat-terrain traversal, variations of values of {�, ✓}
were negligible, therefore, motion errors were learnt with
respect to action only. Fig. 4 shows example heading errors
for each action, and Table I lists learned statistical values.
Although the terrain was mostly flat, the variance in motion
primitive error is significant, which validates the need to
take uncertainty into account in the planning. We found
that the distributions could reasonably be approximated by a
Gaussian.

During rough-terrain traversal, various rocks were tra-
versed. Note that in some cases some rocks shifted under
the weight of the rover, slightly sinking into the sand or
rolling over. These types of situations, which are extremely

(a) Crab(0.3m, 0⇡) (b) Crab(0.3m, ±⇡
4 ) (c) Crab(0.3m, ±⇡

2 )

(d) Crab(0.3m, ± 3⇡
4 ) (e) Crab(0.3m, ⇡) (f) Rotate(±⇡

4 )

Fig. 4. Mobility prediction by action on flat terrain.

TABLE I
MOBILITY PREDICTION BY ACTION, GP FEATURES NOT INCLUDED

Action: crab
0⇡

crab
±⇡/4

crab
±⇡/2

crab
±3⇡/4

crab ⇡ rotate
±⇡/4

Error: �shead �shead �shead �shead �shead �syaw

Flat Terrain
mean (rad) 0.043 0.028 0.004 0.006 0.058 -0.117
std. (rad) 0.074 0.103 0.127 0.091 0.088 0.140
# samples 15 34 39 34 12 32
Rough Terrain - marginalised by Action
mean (rad) 0.044 0.010 0.060 0.037 0.037 -0.063
std. (rad) 0.081 0.115 0.158 0.117 0.089 0.119
# samples 43 58 58 48 35 54

difficult to predict by modelling, were therefore captured
in our learning data. As expected, the control errors were
more significant in rough terrain data. Table II shows the
GP hyperparameters obtained.

B. Simulation of Flat Terrain Traversal

We simulated the robot traversing flat terrain. Control
uncertainty was simulated using the learned data described
in Sec. V-A. The robot’s environment was simulated using
a point cloud acquired by the robot’s RGB-D camera. This
environment is a roughly flat area with a cluster of rocks,
shown in Fig. 5(b). Trials consisted of placing the robot
randomly around the cluster of rocks and directed to a unique
goal region opposite the rock cluster. We used a cost function
where any rock on the terrain appears as an obstacle.

TABLE II
GP HYPERPARAMETERS TRAINED FROM TRAVERSALS IN ROUGH

TERRAIN

Action Error ⇤�2
11 ⇤�2

22 ⇤�2
33 ⇤�2

44 �f �n

crab 0⇡ �shead 0.056 0.052 10.59 10.56 0.251 0.029
crab ±⇡

4 �shead 0.068 0.010 0.063 0.087 0.183 0.032
crab ±⇡

2 �shead 0.644 0.448 0.015 0.024 0.000 0.111
crab ± 3⇡

4 �shead 1.89 0.058 0.068 1.78 0.284 0.040
crab ⇡ �shead 0.055 0.042 0.151 2.47 0.163 0.032
rotate ±⇡

4 �syaw 0.007 0.246 0.036 0.014 0.135 0.042



(a) Simulated trajectories

(b) The real terrain

Fig. 5. (a) shows a few samples of simulated trajectories to navigate
around a cluster of rocks (shown in (b)). The cost on the map is shown as
levels of grey, with white indicating the highest cost, for a single orientation
value: the rover facing left. The brown rectangle on the left indicates the
common goal region. Red trajectories were computed without considering
uncertainty, while green trajectories considered uncertainty.

Planning without uncertainty (whereby the expectation of
the transition function E(P (�s|�(s, a), a)) learned is used
instead of the full distribution) and planning considering
uncertainty were each tested 100 times. When planning
considering uncertainty, the flat-terrain learning data were
used, whereby �s

head

was considered during crab actions,
and �s

yaw

was considered during rotate actions. Resultant
trajectories were assessed in light of the known �s

head

and
�s

yaw

distributions to determine the probability of colliding
with a rock as well as the expectation of accumulated cost
for each trajectory. Results obtained for both methods can be
compared using the statistics on all executed trajectories in
Table III. These statistics represent: the averages of total cost
accumulated form start position to goal, the probability of
hitting an obstacle summed over the entire trajectory and the
minimum distance to an obstacle over the trajectory. Fig. 5(a)
shows a few examples of trajectories executed.

Results in Table III highlight two of the major conse-
quences of planning without uncertainty: a platform will be
more likely to collide with an obstacle and will, on average,
accumulate more cost in traversing to the goal region. In
fact, when planning without uncertainty, the projected accu-
mulated cost will always be underestimated when the robot
deviates at least once from the lowest cost path it computes,

TABLE III
SIMULATED PLANNING AROUND A CLUSTER OF ROCKS

No Uncertainty Cost Prob. Min. Dist. (m)
mean 1.132 0.028 0.154
std. 0.605 0.101 0.131
max. 6.879 0.68 0.530
min. 0.727 0 0.015
Head. Uncertainty Cost Prob. Min. Dist. (m)
mean 1.080 0.005 0.161
std. 0.138 0.035 0.113
max. 1.449 0.34 0.505
min. 0.733 0.0 0.025

which is frequently the case with imperfect control. Thus
planning without uncertainty cannot provide any guarantee
of total cost accumulated to reach a goal region, which
is important when a decision needs to be made regarding
if a goal region is worth visiting up to a certain cost of
traversing there. The safety issue of rock collisions occurs
when the planner follows paths very close to an obstacle
without considering consequences of slight deviations from
its path.

C. Experiments of Flat Terrain Traversal

We conducted a series of experiments using the physical
robot traversing flat terrain. The robot navigated from a
starting position to a goal region whilst avoiding large
rocks. The terrain was flat sand and gravel, however due
to the imperfect control on the loose terrain, the control
uncertainties were significant, as shown earlier in the training
data in Sec. V-A.

Trajectories were planned and executed on the robot
10 times for planning with uncertainty (in heading during
crabbing actions and yaw during rotation actions). For com-
parison, 10 trajectories were also planned and executed with-
out accounting for uncertainty. In both cases, two different
starting points were used, while the goal region was the same.

Fig. 6 shows a few examples of the actual trajectories
executed by the rover. Occlusions shown in the cost map are
due to “shadows” of rocks when they were observed by the
robot.

The results of planning with uncertainty of heading dur-
ing crabbing actions and yaw during rotation actions are
compared statistically against results of planning without
uncertainty in Table IV. Results indicate that the robot would,
on average, plan wider berths around rocks with uncertainty
considered and execute safer paths in practice.

D. Experiments on Unstructured Terrain: Traversing Rocks

We also conducted a series of experiments where the robot
traverses rough terrain. Trained GP models were used to
predict control uncertainty as described in Sec. V-A. As
in the training phase, the experiments were conducted in
unstructured and rough terrain because of the presence of
rocks that the robot sometimes has to travel across, but they
were limited to areas with negligible terrain slopes.



Fig. 6. Example of trajectories taken to avoid several rocks on otherwise
flat terrain. Red: without uncertainty considered. Green: with uncertainty in
heading. The starting position is indicated by the brown circle on the left
and the goal region is shown as the brown rectangle at the bottom right.
Planning with uncertainty generates paths that are less sensitive to control
error.

The learned rough-terrain models were limited to traversal
of one rock at a time, and so a rock field (Fig. 7) was set up
accordingly. However, the layout of rocks was dense enough
to cause the robot to traverse multiple rocks while navigating
to the goal region.

In addition to �s

yaw

during rotation actions, two types of
uncertainty were considered (separately) with crab actions:
�s

head

and �s

dist

. Fig. 8 shows an example policy com-
puted by our planning algorithm.

Resultant trajectories in Fig. 9 show that whilst each
planning method attempted to navigate between rocks, the
method of planning without uncertainty (red) would tend
to “zig zag” more severely in attempts to attain the least
possible cost path, finely navigating every rock. Methods
considering uncertainty (green, cyan), by contrast, appear
smoother. The “zig zag” action sequences can actually result
in more rock traversals in total, due to a greater distance
travelled in the rock field.

Results shown in Table V indicate that policies chosen
by the planning with uncertainty case were favourable, with
less accumulated cost. In these tests, considering heading
uncertainty was most significant to overall cost. In this table,
“stuck states” refers to situations where the rover dug one
of its wheels in next to a rock during the test and could not
initially mount the rock as the result. This occurred 20% of

TABLE IV
FLAT TRAVERSAL: PROBABILITY ASSESSMENT

No Uncertainty Cost Prob. Hit Min. Dist. (m)
# trials: 10 Mean: 1.295 0.380 0.095
# collisions: 1 Std.: 0.385 0.492 0.084
Uncertainty Cost Prob. Hit Min. Dist. (m)
# Trials: 10 Mean: 1.177 0.016 0.165
# Collisions: 2 Std.: 0.262 0.005 0.088

TABLE V
PLANNING WITH TRAVERSAL OVER ROCKS

Uncertainty
considered

# Trials # Stuck
States

Mean
Cost

Std.
Cost

none 5 1 1.46 0.050
�sdist,�syaw 5 1 1.31 0.083
�shead,�syaw 5 0 1.19 0.061

the time when no uncertainty was considered. When con-
sidering uncertainty in distance travelled, a stuck state still
occured. However, planning with heading uncertainty again
made more impact, with all stuck states avoided. Although
the sample size is limited, this trend in the data supports the
claim that our approach to consider the control uncertainty
can significantly improve the safety of the platform at the
execution of planned trajectories.

Note that in these experiments we considered two sources
of uncertainty independently. Considering them in combina-
tion should then have an even stronger impact on the platform
safety. This will be tackled in future work.

VI. CONCLUSION

Since the motion of any real mobile robot is stochastic to
some degree, considering control uncertainty at the planning
stage enables us to significantly enhance the safety of the
platform (e.g. mitigating chances of collisions) and lower
the cost accumulated on average during the execution of
planned trajectories in real environments. These claims were
demonstrated in this paper using a holonomic planetary
rover. A model of uncertainty was built using learning data
and Gaussian processes to predict motions over flat and
unstructured terrain in a Mars yard setup. The trained model
was then exploited to plan policies using dynamic program-
ming, and to execute paths following the planned policies.
Experimental validation was achieved both in simulation and
in real experiments, in a variety of situations, taking into
account uncertainties in heading and distance travelled. The
experimental validation demonstrates the results obtained
on the actual executed trajectories compared to trajectories
executed when planning without considering uncertainty (de-

Fig. 7. Rock traversal experiment setup: rover is shown at its starting
position. It must traverse over a “rock field” to reach a goal region to the
right (out of the picture).



Fig. 8. Example policy obtained for rough terrain experiment with �shead
considered, projected onto the x � y plane. The goal is the empty square
in the upper right corner of the figure. Arrows indicate the preferred crab
actions at each state. Dots indicate rotations.

Fig. 9. Examples of trajectories during the rock traversal experiments,
comparing planning when considering different uncertainty sources. Red:
without uncertainty considered. Green: with uncertainty in heading. Cyan:
with uncertainty in distance. Cost map shown in grayscale, from dark to
light as cost increases. The starting position is indicated by the brown disk
on the left and the goal region is shown as the brown rectangle at the top
right corner. The planner generally attempts to navigate between most of
the rocks which are high cost.

terministic control). These results show the improvement in
safety and accumulated cost when accounting for uncertainty.

In future work, we will consider more complex terrain
with larger slopes, denser collections of small rocks. We
are particularly interested in studying the ability of our
approach to learn and predict the deviations of control

actions due to loose rocks that shift during traversal. We will
also investigate an extension of the GP learning to include
observations collected during navigation.
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